Nuprl Lemma : coPathAgree_wf

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[n:ℕ]. ∀[w:coW(A;a.B[a])]. ∀[p,q:coPath(a.B[a];w;n)].  (coPathAgree(a.B[a];n;w;p;q) ∈ ℙ)


Proof




Definitions occuring in Statement :  coPathAgree: coPathAgree(a.B[a];n;w;p;q) coPath: coPath(a.B[a];w;n) coW: coW(A;a.B[a]) nat: uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: so_lambda: λ2x.t[x] so_apply: x[s] coPathAgree: coPathAgree(a.B[a];n;w;p;q) eq_int: (i =z j) all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b subtract: m nequal: a ≠ b ∈  not: ¬A le: A ≤ B less_than': less_than'(a;b) decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtype_rel: A ⊆B top: Top true: True coPath: coPath(a.B[a];w;n) squash: T
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf coPath_wf coW_wf btrue_wf bool_wf eqtt_to_assert assert_of_eq_int true_wf eqff_to_assert eq_int_wf equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int false_wf le_wf decidable__le subtract_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_weakening2 nat_wf int_subtype_base assert_wf bnot_wf not_wf equal-wf-base coW-dom_wf coW-item_wf subtype_rel-equal not-le-2 not-equal-2 and_wf bool_cases iff_transitivity iff_weakening_uiff assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination independent_functionElimination voidElimination lambdaEquality dependent_functionElimination isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry cumulativity applyEquality functionExtensionality because_Cache instantiate unionElimination equalityElimination productElimination dependent_pairFormation promote_hyp dependent_set_memberEquality independent_pairFormation addEquality voidEquality intEquality minusEquality functionEquality universeEquality baseClosed productEquality imageElimination applyLambdaEquality imageMemberEquality impliesFunctionality

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[w:coW(A;a.B[a])].  \mforall{}[p,q:coPath(a.B[a];w;n)].
    (coPathAgree(a.B[a];n;w;p;q)  \mmember{}  \mBbbP{})



Date html generated: 2018_07_25-PM-01_38_01
Last ObjectModification: 2018_06_01-AM-09_58_31

Theory : co-recursion


Home Index