Nuprl Lemma : coPathAgree_le
∀[A:𝕌']. ∀[B:A ⟶ Type].
  ∀n:ℕ
    ∀[w:coW(A;a.B[a])]
      ∀p,q:coPath(a.B[a];w;n).  (coPathAgree(a.B[a];n;w;p;q) ⇒ (∀m:ℕ. ((m ≤ n) ⇒ coPathAgree(a.B[a];m;w;p;q))))
Proof
Definitions occuring in Statement : 
coPathAgree: coPathAgree(a.B[a];n;w;p;q), 
coPath: coPath(a.B[a];w;n), 
coW: coW(A;a.B[a]), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
le: A ≤ B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
nat: ℕ, 
decidable: Dec(P), 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
false: False, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
subtract: n - m, 
top: Top, 
le: A ≤ B, 
less_than': less_than'(a;b), 
true: True, 
coPathAgree: coPathAgree(a.B[a];n;w;p;q), 
eq_int: (i =z j), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
bfalse: ff, 
exists: ∃x:A. B[x], 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
nequal: a ≠ b ∈ T , 
sq_stable: SqStable(P), 
squash: ↓T, 
coPath: coPath(a.B[a];w;n), 
cand: A c∧ B
Lemmas referenced : 
uall_wf, 
coW_wf, 
all_wf, 
coPath_wf, 
subtract_wf, 
decidable__le, 
false_wf, 
not-le-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
le_wf, 
coPathAgree_wf, 
nat_wf, 
coPath_subtype, 
set_wf, 
less_than_wf, 
primrec-wf2, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
not-equal-2, 
sq_stable__le, 
minus-zero, 
true_wf, 
less_than_transitivity1, 
le_weakening, 
less_than_irreflexivity, 
top_wf, 
coW-item_wf, 
subtype_rel-equal, 
and_wf, 
coW-dom_wf, 
le-add-cancel-alt
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
rename, 
setElimination, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
because_Cache, 
hypothesis, 
universeEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_pairFormation, 
voidElimination, 
productElimination, 
independent_functionElimination, 
independent_isectElimination, 
addEquality, 
isect_memberEquality, 
voidEquality, 
intEquality, 
minusEquality, 
functionEquality, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
applyLambdaEquality, 
productEquality
Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].
    \mforall{}n:\mBbbN{}
        \mforall{}[w:coW(A;a.B[a])]
            \mforall{}p,q:coPath(a.B[a];w;n).
                (coPathAgree(a.B[a];n;w;p;q)  {}\mRightarrow{}  (\mforall{}m:\mBbbN{}.  ((m  \mleq{}  n)  {}\mRightarrow{}  coPathAgree(a.B[a];m;w;p;q))))
Date html generated:
2018_07_25-PM-01_38_19
Last ObjectModification:
2018_06_04-PM-10_02_41
Theory : co-recursion
Home
Index