Nuprl Lemma : copath-eta2

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])]. ∀[p:copath(a.B[a];w)]. ∀[q:coW-dom(a.B[a];w)].
  (0 < copath-length(p)
   (q copath-hd(p) ∈ coW-dom(a.B[a];w))
   (copath-cons(q;copath-tl(p)) p ∈ copath(a.B[a];w)))


Proof




Definitions occuring in Statement :  copath-cons: copath-cons(b;x) copath-tl: copath-tl(x) copath-hd: copath-hd(p) copath-length: copath-length(p) copath: copath(a.B[a];w) coW-dom: coW-dom(a.B[a];w) coW: coW(A;a.B[a]) less_than: a < b uall: [x:A]. B[x] so_apply: x[s] implies:  Q function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a prop: subtype_rel: A ⊆B nat: squash: T true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  copath-eta equal_wf coW-dom_wf copath-hd_wf less_than_wf copath-length_wf nat_wf copath_wf coW_wf copath-tl_wf subtype_rel-equal coW-item_wf subtype_rel_self iff_weakening_equal squash_wf true_wf copath-cons_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation sqequalRule lambdaEquality applyEquality independent_isectElimination natural_numberEquality setElimination rename instantiate cumulativity functionEquality universeEquality functionExtensionality independent_functionElimination imageElimination because_Cache equalityTransitivity equalitySymmetry imageMemberEquality baseClosed productElimination

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].  \mforall{}[p:copath(a.B[a];w)].  \mforall{}[q:coW-dom(a.B[a];w)].
    (0  <  copath-length(p)  {}\mRightarrow{}  (q  =  copath-hd(p))  {}\mRightarrow{}  (copath-cons(q;copath-tl(p))  =  p))



Date html generated: 2018_07_25-PM-01_40_20
Last ObjectModification: 2018_06_14-AM-10_58_10

Theory : co-recursion


Home Index