Step
*
of Lemma
copath-eta2
∀[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])]. ∀[p:copath(a.B[a];w)]. ∀[q:coW-dom(a.B[a];w)].
(0 < copath-length(p)
⇒ (q = copath-hd(p) ∈ coW-dom(a.B[a];w))
⇒ (copath-cons(q;copath-tl(p)) = p ∈ copath(a.B[a];w)))
BY
{ (InstLemma `copath-eta` [] THEN RepeatFor 4 (ParallelLast') THEN Intros THEN RWO "-1" 0 THEN Auto) }
Latex:
Latex:
\mforall{}[A:\mBbbU{}']. \mforall{}[B:A {}\mrightarrow{} Type]. \mforall{}[w:coW(A;a.B[a])]. \mforall{}[p:copath(a.B[a];w)]. \mforall{}[q:coW-dom(a.B[a];w)].
(0 < copath-length(p) {}\mRightarrow{} (q = copath-hd(p)) {}\mRightarrow{} (copath-cons(q;copath-tl(p)) = p))
By
Latex:
(InstLemma `copath-eta` [] THEN RepeatFor 4 (ParallelLast') THEN Intros THEN RWO "-1" 0 THEN Auto)
Home
Index