Nuprl Lemma : isom-preserves-win2

g1,g2:SimpleGame.  (g1 ≅ g2  win2(g1)  win2(g2))


Proof




Definitions occuring in Statement :  isom-games: g1 ≅ g2 win2: win2(g) simple-game: SimpleGame all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q win2: win2(g) uall: [x:A]. B[x] member: t ∈ T isom-games: g1 ≅ g2 exists: x:A. B[x] and: P ∧ Q prop: nat: false: False ge: i ≥  guard: {T} uimplies: supposing a win2strat: win2strat(g;n) eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt cand: c∧ B top: Top le: A ≤ B less_than': less_than'(a;b) not: ¬A decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtype_rel: A ⊆B true: True strat2play: strat2play(g;n;s) squash: T play-item: moves[i] int_seg: {i..j-} lelt: i ≤ j < k seq-item: s[i] pi2: snd(t) nat_plus: + less_than: a < b sq_type: SQType(T) bfalse: ff bool: 𝔹 unit: Unit it: play-len: ||moves|| so_lambda: λ2x.t[x] so_apply: x[s] play-truncate: play-truncate(f;m)
Lemmas referenced :  nat_wf win2_wf isom-games_wf simple-game_wf nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf strat2play_wf win2strat_wf false_wf le_wf top_wf decidable__le subtract_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_weakening2 seq-comp_wf sg-pos_wf seq-comp-len seq-comp-item equal_wf squash_wf true_wf subtype_rel_self iff_weakening_equal seq-len_wf seq-item_wf decidable__lt not-lt-2 lelt_wf sg-legal1_wf le-add-cancel2 le_reflexive one-mul add-mul-special two-mul mul-distributes-right zero-mul not-le-2 omega-shadow eq_int_wf le_weakening assert_wf bnot_wf not_wf equal-wf-base int_subtype_base bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_eq_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot equal-wf-T-base play-len_wf uiff_transitivity strat2play_subtype sequence_wf subtype_rel_transitivity set_wf sg-legal2_wf play-item_wf add-is-int-iff mul-associates mul-distributes mul-commutes le-add-cancel-alt seq-comp-truncate play-truncate_wf seq-truncate-item
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution isect_memberFormation cut hypothesis isectElimination thin hypothesisEquality rename productElimination introduction extract_by_obid equalityTransitivity equalitySymmetry setElimination sqequalRule intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination lambdaEquality dependent_functionElimination independent_pairEquality axiomEquality isect_memberEquality voidEquality independent_pairFormation because_Cache dependent_set_memberEquality unionElimination addEquality applyEquality intEquality minusEquality imageElimination universeEquality equalityUniverse levelHypothesis imageMemberEquality baseClosed instantiate productEquality promote_hyp multiplyEquality dependentIntersectionElimination cumulativity impliesFunctionality baseApply closedConclusion dependentIntersection_memberEquality setEquality equalityElimination functionExtensionality applyLambdaEquality hyp_replacement

Latex:
\mforall{}g1,g2:SimpleGame.    (g1  \mcong{}  g2  {}\mRightarrow{}  win2(g1)  {}\mRightarrow{}  win2(g2))



Date html generated: 2018_07_25-PM-01_34_37
Last ObjectModification: 2018_07_11-PM-00_03_55

Theory : co-recursion


Home Index