Nuprl Lemma : play-truncate_wf

[g:SimpleGame]. ∀[n:ℕ]. ∀[s:win2strat(g;n)]. ∀[f:strat2play(g;n;s)]. ∀[k:{(2 n) 2..||f|| 1-}].
  (play-truncate(f;k) ∈ {moves:strat2play(g;n;s)| ||moves|| k ∈ ℤ)


Proof




Definitions occuring in Statement :  strat2play: strat2play(g;n;s) win2strat: win2strat(g;n) play-truncate: play-truncate(f;m) play-len: ||moves|| simple-game: SimpleGame int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  multiply: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q int_seg: {i..j-} prop: nat: guard: {T} play-truncate: play-truncate(f;m) play-len: ||moves|| subtype_rel: A ⊆B uimplies: supposing a top: Top
Lemmas referenced :  win2strat-strat2play-wf nat_wf simple-game_wf equal_wf play-len_wf int_seg_wf strat2play_subtype sequence_wf sg-pos_wf le_wf seq-len_wf subtype_rel_transitivity seq-len-truncate
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination dependent_set_memberEquality equalityTransitivity equalitySymmetry intEquality setElimination rename addEquality multiplyEquality natural_numberEquality applyEquality lambdaEquality setEquality sqequalRule because_Cache independent_isectElimination isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}[g:SimpleGame].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:win2strat(g;n)].  \mforall{}[f:strat2play(g;n;s)].
\mforall{}[k:\{(2  *  n)  +  2..||f||  +  1\msupminus{}\}].
    (play-truncate(f;k)  \mmember{}  \{moves:strat2play(g;n;s)|  ||moves||  =  k\}  )



Date html generated: 2018_07_25-PM-01_32_34
Last ObjectModification: 2018_06_12-AM-10_03_54

Theory : co-recursion


Home Index