Nuprl Lemma : win2strat-strat2play-wf

[g:SimpleGame]. ∀[n:ℕ].
  ((win2strat(g;n) ∈ Type)
  ∧ (∀[s:win2strat(g;n)]. (strat2play(g;n;s) ∈ Type))
  ∧ (∀[s:win2strat(g;n)]. ∀[f:strat2play(g;n;s)].  (||f|| ∈ ℤ))
  ∧ (∀[s:win2strat(g;n)]. ∀[f:strat2play(g;n;s)]. ∀[k:{(2 n) 2..||f|| 1-}].
       (play-truncate(f;k) ∈ strat2play(g;n;s))))


Proof




Definitions occuring in Statement :  strat2play: strat2play(g;n;s) win2strat: win2strat(g;n) play-truncate: play-truncate(f;m) play-len: ||moves|| simple-game: SimpleGame int_seg: {i..j-} nat: uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T multiply: m add: m natural_number: $n int: universe: Type
Definitions unfolded in proof :  play-truncate: play-truncate(f;m) play-len: ||moves|| uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True win2strat: win2strat(g;n) eq_int: (i =z j) ifthenelse: if then else fi  btrue: tt strat2play: strat2play(g;n;s) play-item: moves[i] int_seg: {i..j-} lelt: i ≤ j < k so_lambda: λ2x.t[x] so_apply: x[s] sq_stable: SqStable(P) squash: T cand: c∧ B pi2: snd(t) pi1: fst(t) bool: 𝔹 unit: Unit it: bfalse: ff exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈  nat_plus: + less_than: a < b seq-item: s[i] seq-truncate: seq-truncate(s;n)
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel nat_wf simple-game_wf top_wf sequence_wf sg-pos_wf le_wf seq-len_wf equal_wf seq-item_wf decidable__lt not-lt-2 lelt_wf sg-init_wf sg-legal1_wf le-add-cancel2 set_wf seq-truncate_wf not-le-2 sq_stable__le int_seg_wf seq-len-truncate seq-truncate-item eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int dep-isect-wf equal-wf-T-base int_subtype_base sg-legal2_wf not-equal-2 le_antisymmetry_iff mul-associates le-add-cancel-alt assert_wf bnot_wf not_wf equal-wf-base le_weakening2 set_subtype_base add-is-int-iff mul-distributes mul-commutes mul-distributes-right zero-mul not-equal-implies-less subtype_rel_self le_reflexive one-mul add-mul-special two-mul minus-zero omega-shadow bool_cases iff_transitivity iff_weakening_uiff assert_of_bnot le_weakening mul_bounds_1a add_nat_wf multiply_nat_wf uiff_transitivity int_seg_subtype_nat seq-truncate-truncate
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination independent_functionElimination voidElimination lambdaEquality dependent_functionElimination axiomEquality unionElimination independent_pairFormation productElimination addEquality applyEquality isect_memberEquality voidEquality intEquality minusEquality because_Cache equalityTransitivity equalitySymmetry setEquality productEquality dependent_set_memberEquality imageMemberEquality baseClosed imageElimination independent_pairEquality multiplyEquality applyLambdaEquality equalityElimination dependent_pairFormation promote_hyp instantiate cumulativity functionEquality baseApply closedConclusion dependentIntersectionElimination sqequalIntensionalEquality impliesFunctionality dependentIntersection_memberEquality comment

Latex:
\mforall{}[g:SimpleGame].  \mforall{}[n:\mBbbN{}].
    ((win2strat(g;n)  \mmember{}  Type)
    \mwedge{}  (\mforall{}[s:win2strat(g;n)].  (strat2play(g;n;s)  \mmember{}  Type))
    \mwedge{}  (\mforall{}[s:win2strat(g;n)].  \mforall{}[f:strat2play(g;n;s)].    (||f||  \mmember{}  \mBbbZ{}))
    \mwedge{}  (\mforall{}[s:win2strat(g;n)].  \mforall{}[f:strat2play(g;n;s)].  \mforall{}[k:\{(2  *  n)  +  2..||f||  +  1\msupminus{}\}].
              (play-truncate(f;k)  \mmember{}  strat2play(g;n;s))))



Date html generated: 2018_07_25-PM-01_32_00
Last ObjectModification: 2018_06_12-AM-09_55_18

Theory : co-recursion


Home Index