Nuprl Lemma : sg-normalize-win2

[g:SimpleGame]. win2(g) ≡ win2(sg-normalize(g))


Proof




Definitions occuring in Statement :  sg-normalize: sg-normalize(g) win2: win2(g) simple-game: SimpleGame ext-eq: A ≡ B uall: [x:A]. B[x]
Definitions unfolded in proof :  pi2: snd(t) seq-item: s[i] nequal: a ≠ b ∈  int_nzero: -o assert: b bnot: ¬bb exists: x:A. B[x] sg-reachable: sg-reachable(g;x;y) play-len: ||moves|| less_than: a < b nat_plus: + cand: c∧ B play-item: moves[i] eq_int: (i =z j) strat2play: strat2play(g;n;s) it: unit: Unit bool: 𝔹 bfalse: ff btrue: tt ifthenelse: if then else fi  squash: T sq_stable: SqStable(P) win2strat: win2strat(g;n) sq_type: SQType(T) so_apply: x[s] so_lambda: λ2x.t[x] true: True less_than': less_than'(a;b) le: A ≤ B top: Top subtract: m uiff: uiff(P;Q) rev_implies:  Q not: ¬A iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) lelt: i ≤ j < k int_seg: {i..j-} prop: uimplies: supposing a guard: {T} ge: i ≥  false: False implies:  Q nat: all: x:A. B[x] subtype_rel: A ⊆B and: P ∧ Q ext-eq: A ≡ B win2: win2(g) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  uall_wf dep-isect_wf subtype_rel_transitivity dep-isect-subtype mul-swap play-item-reachable sg-reachable_self strat2play-reachable subtype_rel_weakening ext-eq_inversion subtract-add-cancel iff_weakening_equal mod2-2n mod2-2n-plus-1 nequal_wf true_wf modulus_wf nat_plus_properties seq-truncate-item seq-len-truncate seq-add-item seq-add-len assert-bnot bool_cases_sqequal assert_of_lt_int lt_int_wf mul_preserves_le nat_plus_subtype_nat nat_plus_wf squash_wf all_wf sequence_wf seq-truncate_wf seq-add_wf strat2play-invariant-1 strat2play-invariant strat2play_subtype set_wf omega-shadow two-mul one-mul le_reflexive not-equal-implies-less mul-commutes mul-distributes mul-distributes-right play-item_wf sg-legal2_wf sg-legal2-normalize multiply_nat_wf add_nat_wf mul-associates add-is-int-iff mul_bounds_1a equal-wf-base le_weakening win2strat_subtype sg-legal1-normalize sg-init-normalize sg-pos-normalize sg-legal1_wf seq-item_wf seq-len_wf equal_functionality_wrt_subtype_rel2 sg-init_wf sg-reachable_wf sg-pos_wf sequence_subtype subtype_rel-equal le_weakening2 le-add-cancel2 uiff_transitivity assert_of_bnot iff_weakening_uiff iff_transitivity eqff_to_assert assert_of_eq_int eqtt_to_assert bool_subtype_base bool_cases play-len_wf equal_wf strat2play_wf minus-zero not_wf bnot_wf assert_wf equal-wf-T-base bool_wf eq_int_wf nat_wf zero-mul add-mul-special sq_stable__le not-le-2 le-add-cancel-alt not-equal-2 not-lt-2 decidable__lt sg-normalize_wf win2strat_wf le_wf int_seg_properties subtype_rel_self lelt_wf int_subtype_base set_subtype_base subtype_base_sq decidable__int_equal le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-minus minus-add minus-one-mul-top zero-add minus-one-mul condition-implies-le less-iff-le not-ge-2 false_wf subtract_wf decidable__le int_seg_wf less_than_wf ge_wf less_than_irreflexivity less_than_transitivity1 nat_properties simple-game_wf
Rules used in proof :  isectEquality levelHypothesis equalityUniverse universeEquality addLevel promote_hyp sqequalIntensionalEquality functionEquality dependent_pairFormation applyLambdaEquality closedConclusion baseApply productEquality equalityElimination impliesFunctionality cumulativity setEquality functionExtensionality dependentIntersection_memberEquality dependentIntersectionElimination multiplyEquality imageElimination baseClosed imageMemberEquality hypothesis_subsumption equalitySymmetry equalityTransitivity dependent_set_memberEquality instantiate because_Cache minusEquality intEquality voidEquality isect_memberEquality applyEquality addEquality independent_pairFormation unionElimination dependent_functionElimination lambdaEquality voidElimination independent_functionElimination independent_isectElimination natural_numberEquality intWeakElimination rename setElimination hypothesisEquality isectElimination lambdaFormation extract_by_obid hypothesis axiomEquality independent_pairEquality thin productElimination sqequalHypSubstitution sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[g:SimpleGame].  win2(g)  \mequiv{}  win2(sg-normalize(g))



Date html generated: 2018_07_25-PM-01_35_50
Last ObjectModification: 2018_06_20-PM-00_31_10

Theory : co-recursion


Home Index