Nuprl Lemma : coW-equiv-implies

[A:𝕌']
  ∀B:A ⟶ Type. ∀w,w':coW(A;a.B[a]).
    (coW-equiv(a.B[a];w;w')  (∀z:coW(A;a.B[a]). (coWmem(a.B[a];z;w)  coWmem(a.B[a];z;w'))))


Proof




Definitions occuring in Statement :  coWmem: coWmem(a.B[a];z;w) coW-equiv: coW-equiv(a.B[a];w;w') coW: coW(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  top: Top btrue: tt bfalse: ff ifthenelse: if then else fi  subtract: m eq_int: (i =z j) coPath: coPath(a.B[a];w;n) copath-hd: copath-hd(p) copath-tl: copath-tl(x) copath: copath(a.B[a];w) less_than': less_than'(a;b) le: A ≤ B uiff: uiff(P;Q) rev_implies:  Q not: ¬A decidable: Dec(P) squash: T sq_stable: SqStable(P) false: False true: True guard: {T} sq_type: SQType(T) uimplies: supposing a sg-legal2: Legal2(x;y) prop: nat: subtype_rel: A ⊆B copath-cons: copath-cons(b;x) copath-nil: () copath-length: copath-length(p) cand: c∧ B or: P ∨ Q sg-init: InitialPos(g) pi2: snd(t) sg-legal1: Legal1(x;y) pi1: fst(t) sg-pos: Pos(g) coW-game: coW-game(a.B[a];w;w') and: P ∧ Q iff: ⇐⇒ Q so_apply: x[s] so_lambda: λ2x.t[x] member: t ∈ T exists: x:A. B[x] coW-equiv: coW-equiv(a.B[a];w;w') coWmem: coWmem(a.B[a];z;w) implies:  Q all: x:A. B[x] uall: [x:A]. B[x]
Lemmas referenced :  subtype_rel_weakening ext-eq_inversion sg-normalize-win2 coPath_wf le_wf coW-dom_wf copath-eta sg-pos_wf simple-game_wf true_wf sg-normalize_wf isom-win2 coW-game-step-isom coW-equiv_transitivity le-add-cancel add-zero add_functionality_wrt_le le_antisymmetry_iff not-lt-2 false_wf decidable__lt copath-hd_wf sq_stable__equal sq_stable__and int_subtype_base subtype_base_sq sg-change-init_wf win2_wf squash_wf equal-wf-T-base equal_wf coW-equiv_wf coW_wf coWmem_wf sg-init_wf sg-legal1_wf copathAgree_wf equal-wf-base copath_wf equal-wf-base-T copathAgree-nil nat_wf copath-length_wf coW-item_wf copath-nil_wf copath-cons_wf coW-game_wf win2-iff
Rules used in proof :  voidEquality dependent_pairEquality functionExtensionality dependent_pairFormation imageElimination imageMemberEquality axiomEquality promote_hyp voidElimination independent_isectElimination equalityTransitivity applyLambdaEquality hyp_replacement equalitySymmetry unionElimination natural_numberEquality because_Cache isect_memberEquality universeEquality functionEquality cumulativity instantiate intEquality baseClosed productEquality independent_pairFormation rename setElimination inlFormation independent_pairEquality dependent_set_memberEquality independent_functionElimination hypothesis applyEquality lambdaEquality sqequalRule hypothesisEquality isectElimination dependent_functionElimination extract_by_obid introduction cut thin productElimination sqequalHypSubstitution lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}']
    \mforall{}B:A  {}\mrightarrow{}  Type.  \mforall{}w,w':coW(A;a.B[a]).
        (coW-equiv(a.B[a];w;w')  {}\mRightarrow{}  (\mforall{}z:coW(A;a.B[a]).  (coWmem(a.B[a];z;w)  {}\mRightarrow{}  coWmem(a.B[a];z;w'))))



Date html generated: 2018_07_25-PM-01_48_50
Last ObjectModification: 2018_07_11-PM-00_21_56

Theory : co-recursion


Home Index