Nuprl Lemma : coWmem_wf

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w,w':coW(A;a.B[a])].  (coWmem(a.B[a];w;w') ∈ ℙ)


Proof




Definitions occuring in Statement :  coWmem: coWmem(a.B[a];z;w) coW: coW(A;a.B[a]) uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] coWmem: coWmem(a.B[a];z;w) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  coW_wf coW-item_wf coW-equiv_wf coW-dom_wf exists_wf
Rules used in proof :  universeEquality functionEquality because_Cache isect_memberEquality cumulativity instantiate equalitySymmetry equalityTransitivity axiomEquality hypothesis applyEquality lambdaEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w,w':coW(A;a.B[a])].    (coWmem(a.B[a];w;w')  \mmember{}  \mBbbP{})



Date html generated: 2018_07_25-PM-01_48_09
Last ObjectModification: 2018_06_20-PM-05_56_55

Theory : co-recursion


Home Index