Nuprl Lemma : coW-equiv_weakening
∀[A:𝕌']. ∀B:A ⟶ Type. ∀w,w':coW(A;a.B[a]).  coW-equiv(a.B[a];w;w') supposing w = w' ∈ coW(A;a.B[a])
Proof
Definitions occuring in Statement : 
coW-equiv: coW-equiv(a.B[a];w;w')
, 
coW: coW(A;a.B[a])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
squash: ↓T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
coW-equiv: coW-equiv(a.B[a];w;w')
, 
coW-game: coW-game(a.B[a];w;w')
, 
sg-legal2: Legal2(x;y)
, 
sg-legal1: Legal1(x;y)
, 
sg-pos: Pos(g)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
exists: ∃x:A. B[x]
, 
so_apply: x[s1;s2]
, 
sg-init: InitialPos(g)
, 
simple-game: SimpleGame
, 
or: P ∨ Q
, 
nat: ℕ
, 
cand: A c∧ B
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
sq_stable: SqStable(P)
, 
subtract: n - m
, 
top: Top
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
Lemmas referenced : 
coW-equiv_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
implies-sg-win2, 
coW-game_wf, 
equal_wf, 
copath_wf, 
exists_wf, 
sg-init_wf, 
copath-nil_wf, 
or_wf, 
copath-length_wf, 
copathAgree_wf, 
all_wf, 
coW_wf, 
ifthenelse_wf, 
lt_int_wf, 
nat_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
set_wf, 
equal-wf-base, 
and_wf, 
less_than_irreflexivity, 
sq_stable__copathAgree, 
not-lt-2, 
le_antisymmetry_iff, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
le-add-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
axiomEquality, 
hypothesis, 
thin, 
rename, 
applyEquality, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
sqequalRule, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
dependent_pairFormation, 
spreadEquality, 
productEquality, 
functionEquality, 
cumulativity, 
functionExtensionality, 
dependent_pairEquality, 
independent_pairEquality, 
intEquality, 
addEquality, 
setEquality, 
setElimination, 
independent_pairFormation, 
unionElimination, 
equalityElimination, 
promote_hyp, 
voidElimination, 
inrFormation, 
dependent_set_memberEquality, 
applyLambdaEquality, 
hyp_replacement, 
inlFormation, 
isect_memberEquality, 
voidEquality, 
minusEquality
Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}B:A  {}\mrightarrow{}  Type.  \mforall{}w,w':coW(A;a.B[a]).    coW-equiv(a.B[a];w;w')  supposing  w  =  w'
Date html generated:
2018_07_25-PM-01_42_41
Last ObjectModification:
2018_07_11-AM-11_47_58
Theory : co-recursion
Home
Index