Nuprl Lemma : coW-equiv_weakening

[A:𝕌']. ∀B:A ⟶ Type. ∀w,w':coW(A;a.B[a]).  coW-equiv(a.B[a];w;w') supposing w' ∈ coW(A;a.B[a])


Proof




Definitions occuring in Statement :  coW-equiv: coW-equiv(a.B[a];w;w') coW: coW(A;a.B[a]) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T squash: T prop: so_lambda: λ2x.t[x] so_apply: x[s] true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q coW-equiv: coW-equiv(a.B[a];w;w') coW-game: coW-game(a.B[a];w;w') sg-legal2: Legal2(x;y) sg-legal1: Legal1(x;y) sg-pos: Pos(g) pi1: fst(t) pi2: snd(t) exists: x:A. B[x] so_apply: x[s1;s2] sg-init: InitialPos(g) simple-game: SimpleGame or: P ∨ Q nat: cand: c∧ B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A sq_stable: SqStable(P) subtract: m top: Top le: A ≤ B less_than': less_than'(a;b)
Lemmas referenced :  coW-equiv_wf squash_wf true_wf subtype_rel_self iff_weakening_equal implies-sg-win2 coW-game_wf equal_wf copath_wf exists_wf sg-init_wf copath-nil_wf or_wf copath-length_wf copathAgree_wf all_wf coW_wf ifthenelse_wf lt_int_wf nat_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf set_wf equal-wf-base and_wf less_than_irreflexivity sq_stable__copathAgree not-lt-2 le_antisymmetry_iff condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-commutes add_functionality_wrt_le add-associates le-add-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction axiomEquality hypothesis thin rename applyEquality lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity equalitySymmetry because_Cache sqequalRule natural_numberEquality imageMemberEquality baseClosed instantiate universeEquality independent_isectElimination productElimination independent_functionElimination dependent_functionElimination dependent_pairFormation spreadEquality productEquality functionEquality cumulativity functionExtensionality dependent_pairEquality independent_pairEquality intEquality addEquality setEquality setElimination independent_pairFormation unionElimination equalityElimination promote_hyp voidElimination inrFormation dependent_set_memberEquality applyLambdaEquality hyp_replacement inlFormation isect_memberEquality voidEquality minusEquality

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}B:A  {}\mrightarrow{}  Type.  \mforall{}w,w':coW(A;a.B[a]).    coW-equiv(a.B[a];w;w')  supposing  w  =  w'



Date html generated: 2018_07_25-PM-01_42_41
Last ObjectModification: 2018_07_11-AM-11_47_58

Theory : co-recursion


Home Index