Nuprl Lemma : implies-sg-win2
∀g:SimpleGame
  ((∃Good:Pos(g) ⟶ ℙ
     ∃F:p:Pos(g) ⟶ q:Pos(g) ⟶ Pos(g)
      (Good[InitialPos(g)] ∧ (∀p:{p:Pos(g)| Good[p]} . ∀q:{q:Pos(g)| Legal1(p;q)} .  (Good[F[p;q]] ∧ Legal2(q;F[p;q]))))\000C)
  
⇒ win2(g))
Proof
Definitions occuring in Statement : 
win2: win2(g)
, 
sg-legal2: Legal2(x;y)
, 
sg-legal1: Legal1(x;y)
, 
sg-init: InitialPos(g)
, 
sg-pos: Pos(g)
, 
simple-game: SimpleGame
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
win2: win2(g)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
false: False
, 
ge: i ≥ j 
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
win2strat: win2strat(g;n)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_apply: x[s1;s2]
, 
sq_type: SQType(T)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
squash: ↓T
, 
play-item: moves[i]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
play-truncate: play-truncate(f;m)
, 
play-len: ||moves||
, 
cand: A c∧ B
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
sq_stable: SqStable(P)
, 
seq-item: s[i]
, 
pi2: snd(t)
Lemmas referenced : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
decidable__le, 
subtract_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
nat_wf, 
exists_wf, 
sg-pos_wf, 
sg-init_wf, 
subtype_rel_self, 
all_wf, 
sg-legal1_wf, 
sg-legal2_wf, 
simple-game_wf, 
eq_int_wf, 
bool_wf, 
equal-wf-base, 
assert_wf, 
bnot_wf, 
not_wf, 
int_subtype_base, 
subtype_base_sq, 
strat2play_wf, 
not-le-2, 
le_wf, 
equal-wf-T-base, 
play-len_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf, 
strat2play-invariant-1, 
le-add-cancel-alt, 
decidable__lt, 
not-lt-2, 
lelt_wf, 
le-add-cancel2, 
subtract-add-cancel, 
strat2play_subtype, 
le_weakening2, 
seq-truncate-item, 
seq-len-truncate, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
add-is-int-iff, 
mul-distributes, 
mul-commutes, 
seq-item_wf, 
mul_bounds_1a, 
seq-len_wf, 
set_subtype_base, 
multiply-is-int-iff, 
mul-associates, 
mul-distributes-right, 
zero-mul, 
not-equal-implies-less, 
le_reflexive, 
one-mul, 
add-mul-special, 
two-mul, 
omega-shadow, 
add_nat_wf, 
multiply_nat_wf, 
sq_stable__le, 
play-item_wf, 
minus-zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
independent_pairFormation, 
addEquality, 
applyEquality, 
isect_memberEquality, 
voidEquality, 
intEquality, 
minusEquality, 
because_Cache, 
instantiate, 
functionEquality, 
cumulativity, 
universeEquality, 
productEquality, 
setEquality, 
baseClosed, 
baseApply, 
closedConclusion, 
dependentIntersection_memberEquality, 
dependent_set_memberEquality, 
equalityElimination, 
impliesFunctionality, 
imageElimination, 
imageMemberEquality, 
addLevel, 
hyp_replacement, 
levelHypothesis, 
applyLambdaEquality, 
multiplyEquality, 
dependent_pairFormation, 
sqequalIntensionalEquality, 
promote_hyp, 
functionExtensionality
Latex:
\mforall{}g:SimpleGame
    ((\mexists{}Good:Pos(g)  {}\mrightarrow{}  \mBbbP{}
          \mexists{}F:p:Pos(g)  {}\mrightarrow{}  q:Pos(g)  {}\mrightarrow{}  Pos(g)
            (Good[InitialPos(g)]
            \mwedge{}  (\mforall{}p:\{p:Pos(g)|  Good[p]\}  .  \mforall{}q:\{q:Pos(g)|  Legal1(p;q)\}  .    (Good[F[p;q]]  \mwedge{}  Legal2(q;F[p;q])))))
    {}\mRightarrow{}  win2(g))
Date html generated:
2018_07_25-PM-01_34_55
Last ObjectModification:
2018_07_11-AM-11_51_42
Theory : co-recursion
Home
Index