Step
*
1
2
1
of Lemma
coW-game-step-isom
1. A : 𝕌'
2. B : A ⟶ Type
3. w : coW(A;a.B[a])
4. w' : coW(A;a.B[a])
5. t : coW-dom(a.B[a];w)
6. b : coW-dom(a.B[a];w')
7. p1 : copath(a.B[a];coW-item(w;t))
8. p2 : copath(a.B[a];coW-item(w';b))
9. f : sequence(Pos(coW-game(a.B[a];coW-item(w;t);coW-item(w';b))))
10. 0 < ||f||
11. f[0] = <(), ()> ∈ Pos(coW-game(a.B[a];coW-item(w;t);coW-item(w';b)))
12. f[||f|| - 1] = <p1, p2> ∈ Pos(coW-game(a.B[a];coW-item(w;t);coW-item(w';b)))
13. ∀i:ℕ. ((2 * i) + 1 < ||f||
⇒ (↓Legal1(f[2 * i];f[(2 * i) + 1])))
14. ∀i:ℕ+. (2 * i < ||f||
⇒ (↓Legal2(f[(2 * i) - 1];f[2 * i])))
15. 0 < ||f||
16. let u,v = f[0]
in <copath-cons(t;u), copath-cons(b;v)>
= <copath-cons(t;()), copath-cons(b;())>
∈ Pos(coW-game(a.B[a];w;w'))
17. let u,v = f[||f|| - 1]
in <copath-cons(t;u), copath-cons(b;v)>
= <copath-cons(t;p1), copath-cons(b;p2)>
∈ Pos(coW-game(a.B[a];w;w'))
18. ∀i:ℕ
((2 * i) + 1 < ||f||
⇒ (↓Legal1(let u,v = f[2 * i]
in <copath-cons(t;u), copath-cons(b;v)>;let u,v = f[(2 * i) + 1]
in <copath-cons(t;u), copath-cons(b;v)>)))
19. i : ℕ+
20. 2 * i < ||f||
21. v1 : copath(a.B[a];coW-item(w;t))
22. v2 : copath(a.B[a];coW-item(w';b))
23. v3 : copath(a.B[a];coW-item(w;t))
24. v4 : copath(a.B[a];coW-item(w';b))
⊢ Legal2(<v3, v4>;<v1, v2>)
⇒ Legal2(let u,v = <v3, v4> in <copath-cons(t;u), copath-cons(b;v)>;let u,v = <v1, v2> in <\000Ccopath-cons(t;u), copath-cons(b;v)>)
BY
{ ((RepUR ``sg-legal2 coW-game`` 0 THEN (D 0 THENA Auto))
THEN RWO "length-copath-cons" 0
THEN Auto
THEN ParallelOp -2
THEN Auto
THEN BLemma `copathAgree-cons`
THEN Auto) }
Latex:
Latex:
1. A : \mBbbU{}'
2. B : A {}\mrightarrow{} Type
3. w : coW(A;a.B[a])
4. w' : coW(A;a.B[a])
5. t : coW-dom(a.B[a];w)
6. b : coW-dom(a.B[a];w')
7. p1 : copath(a.B[a];coW-item(w;t))
8. p2 : copath(a.B[a];coW-item(w';b))
9. f : sequence(Pos(coW-game(a.B[a];coW-item(w;t);coW-item(w';b))))
10. 0 < ||f||
11. f[0] = <(), ()>
12. f[||f|| - 1] = <p1, p2>
13. \mforall{}i:\mBbbN{}. ((2 * i) + 1 < ||f|| {}\mRightarrow{} (\mdownarrow{}Legal1(f[2 * i];f[(2 * i) + 1])))
14. \mforall{}i:\mBbbN{}\msupplus{}. (2 * i < ||f|| {}\mRightarrow{} (\mdownarrow{}Legal2(f[(2 * i) - 1];f[2 * i])))
15. 0 < ||f||
16. let u,v = f[0] in <copath-cons(t;u), copath-cons(b;v)> = <copath-cons(t;()), copath-cons(b;())>
17. let u,v = f[||f|| - 1]
in <copath-cons(t;u), copath-cons(b;v)>
= <copath-cons(t;p1), copath-cons(b;p2)>
18. \mforall{}i:\mBbbN{}
((2 * i) + 1 < ||f||
{}\mRightarrow{} (\mdownarrow{}Legal1(let u,v = f[2 * i]
in <copath-cons(t;u), copath-cons(b;v)>let u,v = f[(2 * i) + 1]
in <copath-cons(t;u), copath-cons(b;v)>)))
19. i : \mBbbN{}\msupplus{}
20. 2 * i < ||f||
21. v1 : copath(a.B[a];coW-item(w;t))
22. v2 : copath(a.B[a];coW-item(w';b))
23. v3 : copath(a.B[a];coW-item(w;t))
24. v4 : copath(a.B[a];coW-item(w';b))
\mvdash{} Legal2(<v3, v4><v1, v2>)
{}\mRightarrow{} Legal2(let u,v = <v3, v4>
in <copath-cons(t;u), copath-cons(b;v)>let u,v = <v1, v2>
in <copath-cons(t;u), copath-cons(b;v)>)
By
Latex:
((RepUR ``sg-legal2 coW-game`` 0 THEN (D 0 THENA Auto))
THEN RWO "length-copath-cons" 0
THEN Auto
THEN ParallelOp -2
THEN Auto
THEN BLemma `copathAgree-cons`
THEN Auto)
Home
Index