Nuprl Lemma : coW-game2_wf

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w,w',w'':coW(A;a.B[a])].  (coW-game2(a.B[a];w;w'';w') ∈ SimpleGame)


Proof




Definitions occuring in Statement :  coW-game2: coW-game2(a.B[a];w;w'';w') coW: coW(A;a.B[a]) simple-game: SimpleGame uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  or: P ∨ Q nat: subtype_rel: A ⊆B and: P ∧ Q prop: spreadn: spread3 so_apply: x[s] so_lambda: λ2x.t[x] simple-game: SimpleGame coW-game2: coW-game2(a.B[a];w;w'';w') member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  coW_wf copathAgree_wf nat_wf copath-length_wf equal_wf or_wf copath-nil_wf copath_wf
Rules used in proof :  isect_memberEquality instantiate equalitySymmetry equalityTransitivity axiomEquality universeEquality functionEquality natural_numberEquality addEquality rename setElimination intEquality productElimination because_Cache functionExtensionality cumulativity independent_pairEquality hypothesis applyEquality lambdaEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid productEquality dependent_pairEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w,w',w'':coW(A;a.B[a])].    (coW-game2(a.B[a];w;w'';w')  \mmember{}  SimpleGame)



Date html generated: 2018_07_25-PM-01_43_21
Last ObjectModification: 2018_06_22-PM-05_14_48

Theory : co-recursion


Home Index