Nuprl Lemma : decidable__pcw-pp-barred

[P:Type]. ∀[A:P ⟶ Type]. ∀[B:p:P ⟶ A[p] ⟶ Type]. ∀[C:p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P].
  ∀pp:n:ℕ × (ℕn ⟶ pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])). Dec(Barred(pp))


Proof




Definitions occuring in Statement :  pcw-pp-barred: Barred(pp) pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]) int_seg: {i..j-} nat: decidable: Dec(P) uall: [x:A]. B[x] so_apply: x[s1;s2;s3] so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] product: x:A × B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T nat: pcw-pp-barred: Barred(pp) decidable: Dec(P) or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] ge: i ≥  le: A ≤ B and: P ∧ Q int_seg: {i..j-} lelt: i ≤ j < k iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False prop: uiff: uiff(P;Q) uimplies: supposing a subtract: m subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]) spreadn: spread3 isr: isr(x) assert: b ifthenelse: if then else fi  bfalse: ff btrue: tt
Lemmas referenced :  nat_properties decidable__lt nat_wf int_seg_wf pcw-step_wf subtract_wf decidable__le false_wf not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel not-lt-2 add-mul-special zero-mul le-add-cancel-alt lelt_wf decidable__and2 less_than_wf decidable__false true_wf decidable__true equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation productElimination thin cut introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule dependent_functionElimination natural_numberEquality unionElimination productEquality functionEquality cumulativity lambdaEquality applyEquality functionExtensionality universeEquality dependent_set_memberEquality independent_pairFormation voidElimination independent_functionElimination independent_isectElimination addEquality isect_memberEquality voidEquality intEquality minusEquality because_Cache equalityTransitivity equalitySymmetry inrFormation

Latex:
\mforall{}[P:Type].  \mforall{}[A:P  {}\mrightarrow{}  Type].  \mforall{}[B:p:P  {}\mrightarrow{}  A[p]  {}\mrightarrow{}  Type].  \mforall{}[C:p:P  {}\mrightarrow{}  a:A[p]  {}\mrightarrow{}  B[p;a]  {}\mrightarrow{}  P].
    \mforall{}pp:n:\mBbbN{}  \mtimes{}  (\mBbbN{}n  {}\mrightarrow{}  pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])).  Dec(Barred(pp))



Date html generated: 2017_04_14-AM-07_42_07
Last ObjectModification: 2017_02_27-PM-03_13_51

Theory : co-recursion


Home Index