Step
*
3
1
2
1
1
of Lemma
pW-rec_wf
1. P : Type
2. A : P ⟶ Type
3. B : p:P ⟶ A[p] ⟶ Type
4. C : p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P
5. pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b]) ∈ Type
6. pW ∈ P ⟶ Type
7. Q : par:P ⟶ (pW par) ⟶ ℙ
8. ind : par:P
⟶ a:A[par]
⟶ f:(b:B[par;a] ⟶ (pW C[par;a;b]))
⟶ (b:B[par;a] ⟶ Q[C[par;a;b];f b])
⟶ Q[par;pW-sup(a;f)]
9. par : P
10. a : A[par]
11. w1 : b:B[par;a] ⟶ (pco-W C[par;a;b])
12. ∀path:Path. (StepAgree(path 0;par;<a, w1>) 
⇒ (↓∃n:ℕ. Barred(pcw-partial(path;n))))
13. param-W-rel(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b];par;<a, w1>) ∈ n:ℕ
    ⟶ (ℕn ⟶ pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b]))
    ⟶ pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])
    ⟶ ℙ
14. ∀[pp:n:ℕ × (ℕn ⟶ pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b]))]. (Barred(pp) ∈ ℙ)
15. n : ℕ
16. ¬0 < n
17. s : ℕn ⟶ pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])
18. ∀%6:ℕn. (param-W-rel(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b];par;<a, w1>) %6 s (s %6))
19. ∀t:{t:pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])| param-W-rel(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b];par;<a, w1>) n s \000Ct} 
      (let q,w',d = t in 
       case d
        of inl(b) =>
        let a,f = w' 
        in let ind(p,a,f,G) = ind[p;a;f;G] in 
           letrec F(p,w) = let a,f=w in 
                           ind(p,a,f,λb.F(C[p;a;b],f(b)) in 
           F(C[q;a;b];f b)
        | inr(z) =>
        Ax ∈ let q,w',d = t in 
       case d of inl(b) => let a,f = w' in Q[C[q;a;b];f b] | inr(z) => True)
20. <a, w1> ∈ pW par
⊢ ind par a w1 
  (λb.let ind(p,a,f,G) = ind p a f G in 
      letrec F(p,w) = let a,f=w in 
                      ind(p,a,f,λb.F(C p a b,f(b)) in 
      F(C par a b;w1 b)) ∈ Q par pW-sup(a;w1)
BY
{ TACTIC:(Assert w1 ∈ b:B[par;a] ⟶ (pW C[par;a;b]) BY
                ((InstLemma `param-W-ext` [⌜P⌝;⌜A⌝;⌜B⌝;⌜C⌝]⋅ THENA Auto)⋅
                 THEN (With ⌜par⌝ (D (-1))⋅ THENA Auto)
                 THEN Reduce (-1)
                 THEN (Assert <a, w1> ∈ a:A[par] × (b:B[par;a] ⟶ (pW C[par;a;b])) BY
                             (SubsumeC ⌜pW par⌝⋅ THEN Auto))
                 THEN MemHD (-1)
                 THEN All Reduce
                 THEN Auto)) }
1
1. P : Type
2. A : P ⟶ Type
3. B : p:P ⟶ A[p] ⟶ Type
4. C : p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P
5. pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b]) ∈ Type
6. pW ∈ P ⟶ Type
7. Q : par:P ⟶ (pW par) ⟶ ℙ
8. ind : par:P
⟶ a:A[par]
⟶ f:(b:B[par;a] ⟶ (pW C[par;a;b]))
⟶ (b:B[par;a] ⟶ Q[C[par;a;b];f b])
⟶ Q[par;pW-sup(a;f)]
9. par : P
10. a : A[par]
11. w1 : b:B[par;a] ⟶ (pco-W C[par;a;b])
12. ∀path:Path. (StepAgree(path 0;par;<a, w1>) 
⇒ (↓∃n:ℕ. Barred(pcw-partial(path;n))))
13. param-W-rel(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b];par;<a, w1>) ∈ n:ℕ
    ⟶ (ℕn ⟶ pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b]))
    ⟶ pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])
    ⟶ ℙ
14. ∀[pp:n:ℕ × (ℕn ⟶ pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b]))]. (Barred(pp) ∈ ℙ)
15. n : ℕ
16. ¬0 < n
17. s : ℕn ⟶ pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])
18. ∀%6:ℕn. (param-W-rel(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b];par;<a, w1>) %6 s (s %6))
19. ∀t:{t:pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])| param-W-rel(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b];par;<a, w1>) n s \000Ct} 
      (let q,w',d = t in 
       case d
        of inl(b) =>
        let a,f = w' 
        in let ind(p,a,f,G) = ind[p;a;f;G] in 
           letrec F(p,w) = let a,f=w in 
                           ind(p,a,f,λb.F(C[p;a;b],f(b)) in 
           F(C[q;a;b];f b)
        | inr(z) =>
        Ax ∈ let q,w',d = t in 
       case d of inl(b) => let a,f = w' in Q[C[q;a;b];f b] | inr(z) => True)
20. <a, w1> ∈ pW par
21. w1 ∈ b:B[par;a] ⟶ (pW C[par;a;b])
⊢ ind par a w1 
  (λb.let ind(p,a,f,G) = ind p a f G in 
      letrec F(p,w) = let a,f=w in 
                      ind(p,a,f,λb.F(C p a b,f(b)) in 
      F(C par a b;w1 b)) ∈ Q par pW-sup(a;w1)
Latex:
Latex:
1.  P  :  Type
2.  A  :  P  {}\mrightarrow{}  Type
3.  B  :  p:P  {}\mrightarrow{}  A[p]  {}\mrightarrow{}  Type
4.  C  :  p:P  {}\mrightarrow{}  a:A[p]  {}\mrightarrow{}  B[p;a]  {}\mrightarrow{}  P
5.  pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])  \mmember{}  Type
6.  pW  \mmember{}  P  {}\mrightarrow{}  Type
7.  Q  :  par:P  {}\mrightarrow{}  (pW  par)  {}\mrightarrow{}  \mBbbP{}
8.  ind  :  par:P
{}\mrightarrow{}  a:A[par]
{}\mrightarrow{}  f:(b:B[par;a]  {}\mrightarrow{}  (pW  C[par;a;b]))
{}\mrightarrow{}  (b:B[par;a]  {}\mrightarrow{}  Q[C[par;a;b];f  b])
{}\mrightarrow{}  Q[par;pW-sup(a;f)]
9.  par  :  P
10.  a  :  A[par]
11.  w1  :  b:B[par;a]  {}\mrightarrow{}  (pco-W  C[par;a;b])
12.  \mforall{}path:Path.  (StepAgree(path  0;par;<a,  w1>)  {}\mRightarrow{}  (\mdownarrow{}\mexists{}n:\mBbbN{}.  Barred(pcw-partial(path;n))))
13.  param-W-rel(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b];par;<a,  w1>)  \mmember{}  n:\mBbbN{}
        {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b]))
        {}\mrightarrow{}  pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])
        {}\mrightarrow{}  \mBbbP{}
14.  \mforall{}[pp:n:\mBbbN{}  \mtimes{}  (\mBbbN{}n  {}\mrightarrow{}  pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b]))].  (Barred(pp)  \mmember{}  \mBbbP{})
15.  n  :  \mBbbN{}
16.  \mneg{}0  <  n
17.  s  :  \mBbbN{}n  {}\mrightarrow{}  pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])
18.  \mforall{}\%6:\mBbbN{}n.  (param-W-rel(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b];par;<a,  w1>)  \%6  s  (s  \%6))
19.  \mforall{}t:\{t:pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])| 
                param-W-rel(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b];par;<a,  w1>)  n  s  t\} 
            (let  q,w',d  =  t  in 
              case  d
                of  inl(b)  =>
                let  a,f  =  w' 
                in  let  ind(p,a,f,G)  =  ind[p;a;f;G]  in 
                      letrec  F(p,w)  =  let  a,f=w  in 
                                                      ind(p,a,f,\mlambda{}b.F(C[p;a;b],f(b))  in 
                      F(C[q;a;b];f  b)
                |  inr(z)  =>
                Ax  \mmember{}  let  q,w',d  =  t  in 
              case  d  of  inl(b)  =>  let  a,f  =  w'  in  Q[C[q;a;b];f  b]  |  inr(z)  =>  True)
20.  <a,  w1>  \mmember{}  pW  par
\mvdash{}  ind  par  a  w1 
    (\mlambda{}b.let  ind(p,a,f,G)  =  ind  p  a  f  G  in 
            letrec  F(p,w)  =  let  a,f=w  in 
                                            ind(p,a,f,\mlambda{}b.F(C  p  a  b,f(b))  in 
            F(C  par  a  b;w1  b))  \mmember{}  Q  par  pW-sup(a;w1)
By
Latex:
TACTIC:(Assert  w1  \mmember{}  b:B[par;a]  {}\mrightarrow{}  (pW  C[par;a;b])  BY
                            ((InstLemma  `param-W-ext`  [\mkleeneopen{}P\mkleeneclose{};\mkleeneopen{}A\mkleeneclose{};\mkleeneopen{}B\mkleeneclose{};\mkleeneopen{}C\mkleeneclose{}]\mcdot{}  THENA  Auto)\mcdot{}
                              THEN  (With  \mkleeneopen{}par\mkleeneclose{}  (D  (-1))\mcdot{}  THENA  Auto)
                              THEN  Reduce  (-1)
                              THEN  (Assert  <a,  w1>  \mmember{}  a:A[par]  \mtimes{}  (b:B[par;a]  {}\mrightarrow{}  (pW  C[par;a;b]))  BY
                                                      (SubsumeC  \mkleeneopen{}pW  par\mkleeneclose{}\mcdot{}  THEN  Auto))
                              THEN  MemHD  (-1)
                              THEN  All  Reduce
                              THEN  Auto))
Home
Index