Nuprl Lemma : play-truncate-trivial

[g:SimpleGame]. ∀[n:ℕ]. ∀[s:win2strat(g;n)]. ∀[f:strat2play(g;n;s)]. ∀[k:ℤ].
  play-truncate(f;k) supposing ||f|| ∈ ℤ


Proof




Definitions occuring in Statement :  strat2play: strat2play(g;n;s) win2strat: win2strat(g;n) play-truncate: play-truncate(f;m) play-len: ||moves|| simple-game: SimpleGame nat: uimplies: supposing a uall: [x:A]. B[x] int: sqequal: t equal: t ∈ T
Definitions unfolded in proof :  sq_type: SQType(T) pi1: fst(t) seq-len: ||s|| seq-truncate: seq-truncate(s;n) play-len: ||moves|| play-truncate: play-truncate(f;m) sequence: sequence(T) implies:  Q all: x:A. B[x] prop: nat: guard: {T} subtype_rel: A ⊆B uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  subtype_base_sq simple-game_wf nat_wf win2strat_wf strat2play_wf play-len_wf int_subtype_base equal-wf-base-T equal_wf seq-len_wf le_wf sg-pos_wf sequence_wf strat2play_subtype
Rules used in proof :  independent_isectElimination cumulativity instantiate productElimination isect_memberEquality intEquality sqequalAxiom independent_functionElimination dependent_functionElimination lambdaFormation because_Cache natural_numberEquality multiplyEquality addEquality setEquality rename setElimination lambdaEquality equalitySymmetry equalityTransitivity sqequalRule hypothesis applyEquality hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid thin cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[g:SimpleGame].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:win2strat(g;n)].  \mforall{}[f:strat2play(g;n;s)].  \mforall{}[k:\mBbbZ{}].
    play-truncate(f;k)  \msim{}  f  supposing  k  =  ||f||



Date html generated: 2018_07_25-PM-01_32_37
Last ObjectModification: 2018_06_27-PM-08_22_05

Theory : co-recursion


Home Index