Nuprl Lemma : s-hd_wf

[A:Type]. ∀[s:stream(A)].  (s-hd(s) ∈ A)


Proof




Definitions occuring in Statement :  s-hd: s-hd(s) stream: stream(A) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T s-hd: s-hd(s) subtype_rel: A ⊆B guard: {T} uimplies: supposing a all: x:A. B[x] implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] prop:
Lemmas referenced :  stream-ext subtype_rel_weakening stream_wf pi1_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis cumulativity productEquality independent_isectElimination lambdaFormation lambdaEquality productElimination independent_pairEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination axiomEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[s:stream(A)].    (s-hd(s)  \mmember{}  A)



Date html generated: 2017_04_14-AM-07_47_03
Last ObjectModification: 2017_02_27-PM-03_16_59

Theory : co-recursion


Home Index