Nuprl Lemma : s-hd_wf
∀[A:Type]. ∀[s:stream(A)].  (s-hd(s) ∈ A)
Proof
Definitions occuring in Statement : 
s-hd: s-hd(s)
, 
stream: stream(A)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
s-hd: s-hd(s)
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
stream-ext, 
subtype_rel_weakening, 
stream_wf, 
pi1_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
cumulativity, 
productEquality, 
independent_isectElimination, 
lambdaFormation, 
lambdaEquality, 
productElimination, 
independent_pairEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[s:stream(A)].    (s-hd(s)  \mmember{}  A)
Date html generated:
2017_04_14-AM-07_47_03
Last ObjectModification:
2017_02_27-PM-03_16_59
Theory : co-recursion
Home
Index