Nuprl Lemma : stream-ext
∀[A:Type]. stream(A) ≡ A × stream(A)
Proof
Definitions occuring in Statement : 
stream: stream(A)
, 
ext-eq: A ≡ B
, 
uall: ∀[x:A]. B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
stream: stream(A)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
corec-ext, 
continuous-monotone-product, 
continuous-monotone-constant, 
continuous-monotone-id
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
productEquality, 
hypothesisEquality, 
universeEquality, 
independent_isectElimination, 
hypothesis, 
productElimination, 
independent_pairEquality, 
axiomEquality
Latex:
\mforall{}[A:Type].  stream(A)  \mequiv{}  A  \mtimes{}  stream(A)
Date html generated:
2016_05_14-AM-06_22_07
Last ObjectModification:
2015_12_26-AM-11_59_39
Theory : co-recursion
Home
Index