Nuprl Lemma : stream-ext

[A:Type]. stream(A) ≡ A × stream(A)


Proof




Definitions occuring in Statement :  stream: stream(A) ext-eq: A ≡ B uall: [x:A]. B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T stream: stream(A) so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B
Lemmas referenced :  corec-ext continuous-monotone-product continuous-monotone-constant continuous-monotone-id
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality productEquality hypothesisEquality universeEquality independent_isectElimination hypothesis productElimination independent_pairEquality axiomEquality

Latex:
\mforall{}[A:Type].  stream(A)  \mequiv{}  A  \mtimes{}  stream(A)



Date html generated: 2016_05_14-AM-06_22_07
Last ObjectModification: 2015_12_26-AM-11_59_39

Theory : co-recursion


Home Index