Nuprl Lemma : s-tl_wf
∀[A:Type]. ∀[s:stream(A)].  (s-tl(s) ∈ stream(A))
Proof
Definitions occuring in Statement : 
s-tl: s-tl(s)
, 
stream: stream(A)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
s-tl: s-tl(s)
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
stream_wf, 
stream-ext, 
pi2_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality, 
productElimination, 
applyEquality, 
lambdaEquality
Latex:
\mforall{}[A:Type].  \mforall{}[s:stream(A)].    (s-tl(s)  \mmember{}  stream(A))
Date html generated:
2016_05_14-AM-06_22_22
Last ObjectModification:
2015_12_26-AM-11_59_29
Theory : co-recursion
Home
Index