Nuprl Lemma : s-tl_wf

[A:Type]. ∀[s:stream(A)].  (s-tl(s) ∈ stream(A))


Proof




Definitions occuring in Statement :  s-tl: s-tl(s) stream: stream(A) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T s-tl: s-tl(s) ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  stream_wf stream-ext pi2_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution hypothesis axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination thin hypothesisEquality isect_memberEquality because_Cache universeEquality productElimination applyEquality lambdaEquality

Latex:
\mforall{}[A:Type].  \mforall{}[s:stream(A)].    (s-tl(s)  \mmember{}  stream(A))



Date html generated: 2016_05_14-AM-06_22_22
Last ObjectModification: 2015_12_26-AM-11_59_29

Theory : co-recursion


Home Index