Nuprl Lemma : stream-decomp
∀[s:stream(Top)]. (s ~ s-hd(s).s-tl(s))
Proof
Definitions occuring in Statement : 
s-cons: x.s
, 
s-tl: s-tl(s)
, 
s-hd: s-hd(s)
, 
stream: stream(A)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
s-tl: s-tl(s)
, 
s-hd: s-hd(s)
, 
s-cons: x.s
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
Lemmas referenced : 
top_wf, 
stream_wf, 
equal_wf, 
stream-ext, 
subtype_rel_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
productEquality, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
lambdaFormation, 
productElimination, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
hypothesisEquality, 
dependent_functionElimination, 
independent_functionElimination, 
sqequalAxiom, 
applyEquality, 
independent_isectElimination
Latex:
\mforall{}[s:stream(Top)].  (s  \msim{}  s-hd(s).s-tl(s))
Date html generated:
2017_04_14-AM-07_47_09
Last ObjectModification:
2017_02_27-PM-03_17_06
Theory : co-recursion
Home
Index