Nuprl Lemma : stream-decomp

[s:stream(Top)]. (s s-hd(s).s-tl(s))


Proof




Definitions occuring in Statement :  s-cons: x.s s-tl: s-tl(s) s-hd: s-hd(s) stream: stream(A) uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q s-tl: s-tl(s) s-hd: s-hd(s) s-cons: x.s pi1: fst(t) pi2: snd(t) prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a
Lemmas referenced :  top_wf stream_wf equal_wf stream-ext subtype_rel_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin productEquality extract_by_obid hypothesis sqequalHypSubstitution isectElimination lambdaFormation productElimination sqequalRule equalityTransitivity equalitySymmetry hypothesisEquality dependent_functionElimination independent_functionElimination sqequalAxiom applyEquality independent_isectElimination

Latex:
\mforall{}[s:stream(Top)].  (s  \msim{}  s-hd(s).s-tl(s))



Date html generated: 2017_04_14-AM-07_47_09
Last ObjectModification: 2017_02_27-PM-03_17_06

Theory : co-recursion


Home Index