Nuprl Lemma : stream-map_wf

[A,B:Type]. ∀[f:A ⟶ B]. ∀[s:stream(A)].  (stream-map(f;s) ∈ stream(B))


Proof




Definitions occuring in Statement :  stream-map: stream-map(f;s) stream: stream(A) uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T stream-map: stream-map(f;s) stream: stream(A) so_lambda: λ2x.t[x] so_apply: x[s] isect2: T1 ⋂ T2 bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  top: Top bfalse: ff subtype_rel: A ⊆B guard: {T} uimplies: supposing a all: x:A. B[x] implies:  Q prop:
Lemmas referenced :  stream_wf fix_wf_corec_parameter top_wf stream-ext subtype_rel_weakening equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination thin cumulativity hypothesisEquality isect_memberEquality because_Cache functionEquality universeEquality lambdaEquality productEquality unionElimination equalityElimination functionExtensionality voidElimination voidEquality applyEquality independent_isectElimination lambdaFormation spreadEquality productElimination independent_pairEquality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[s:stream(A)].    (stream-map(f;s)  \mmember{}  stream(B))



Date html generated: 2017_04_14-AM-07_47_30
Last ObjectModification: 2017_02_27-PM-03_17_30

Theory : co-recursion


Home Index