Nuprl Lemma : stump-nil
∀T:Type. ∀t:wfd-tree(T). ∀s:ℕ0 ⟶ T.  (stump(t) 0 s ~ ¬bempty-wfd-tree(t))
Proof
Definitions occuring in Statement : 
stump: stump(t), 
empty-wfd-tree: empty-wfd-tree(t), 
wfd-tree: wfd-tree(T), 
int_seg: {i..j-}, 
bnot: ¬bb, 
all: ∀x:A. B[x], 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
so_apply: x[s], 
stump: stump(t), 
top: Top, 
empty-wfd-tree: empty-wfd-tree(t), 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
eq_int: (i =z j), 
subtract: n - m, 
bfalse: ff, 
guard: {T}, 
sq_type: SQType(T)
Lemmas referenced : 
subtype_base_sq, 
bool_subtype_base, 
wfd-tree-induction, 
all_wf, 
int_seg_wf, 
equal_wf, 
bool_wf, 
false_wf, 
le_wf, 
bnot_wf, 
empty-wfd-tree_wf, 
wfd-tree_wf, 
wfd_tree_rec_leaf_lemma, 
bfalse_wf, 
wfd_tree_rec_node_lemma, 
btrue_wf, 
stump_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
natural_numberEquality, 
cumulativity, 
applyEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}T:Type.  \mforall{}t:wfd-tree(T).  \mforall{}s:\mBbbN{}0  {}\mrightarrow{}  T.    (stump(t)  0  s  \msim{}  \mneg{}\msubb{}empty-wfd-tree(t))
Date html generated:
2016_05_14-AM-06_18_19
Last ObjectModification:
2015_12_26-PM-00_03_00
Theory : co-recursion
Home
Index