Step
*
2
1
1
1
1
of Lemma
CCC-bool
1. R : ℕ ⟶ 𝔹 ⟶ ℙ
2. B : ℕ
3. h : f:(ℕB ⟶ 𝔹) ⟶ ℕB
4. ∀f:ℕB ⟶ 𝔹. (R (h f) (f (h f)))
5. finite(ℕB ⟶ 𝔹)
6. ∀[P:(ℕB ⟶ 𝔹) ⟶ ℙ]. ((∀t:ℕB ⟶ 𝔹. Dec(P[t]))
⇒ Dec(∃t:ℕB ⟶ 𝔹. P[t]))
7. ∀[P:(ℕB ⟶ 𝔹) ⟶ ℙ]. ((∀t:ℕB ⟶ 𝔹. Dec(P[t]))
⇒ Dec(∀t:ℕB ⟶ 𝔹. P[t]))
⊢ ∃n:ℕ. ∀m:𝔹. (R n m)
BY
{ (Decide ⌜∃f,g:ℕB ⟶ 𝔹. (((h f) = (h g) ∈ ℤ) ∧ (¬f (h f) = g (h g)))⌝⋅ THENA Auto) }
1
1. R : ℕ ⟶ 𝔹 ⟶ ℙ
2. B : ℕ
3. h : f:(ℕB ⟶ 𝔹) ⟶ ℕB
4. ∀f:ℕB ⟶ 𝔹. (R (h f) (f (h f)))
5. finite(ℕB ⟶ 𝔹)
6. ∀[P:(ℕB ⟶ 𝔹) ⟶ ℙ]. ((∀t:ℕB ⟶ 𝔹. Dec(P[t]))
⇒ Dec(∃t:ℕB ⟶ 𝔹. P[t]))
7. ∀[P:(ℕB ⟶ 𝔹) ⟶ ℙ]. ((∀t:ℕB ⟶ 𝔹. Dec(P[t]))
⇒ Dec(∀t:ℕB ⟶ 𝔹. P[t]))
8. ∃f,g:ℕB ⟶ 𝔹. (((h f) = (h g) ∈ ℤ) ∧ (¬f (h f) = g (h g)))
⊢ ∃n:ℕ. ∀m:𝔹. (R n m)
2
1. R : ℕ ⟶ 𝔹 ⟶ ℙ
2. B : ℕ
3. h : f:(ℕB ⟶ 𝔹) ⟶ ℕB
4. ∀f:ℕB ⟶ 𝔹. (R (h f) (f (h f)))
5. finite(ℕB ⟶ 𝔹)
6. ∀[P:(ℕB ⟶ 𝔹) ⟶ ℙ]. ((∀t:ℕB ⟶ 𝔹. Dec(P[t]))
⇒ Dec(∃t:ℕB ⟶ 𝔹. P[t]))
7. ∀[P:(ℕB ⟶ 𝔹) ⟶ ℙ]. ((∀t:ℕB ⟶ 𝔹. Dec(P[t]))
⇒ Dec(∀t:ℕB ⟶ 𝔹. P[t]))
8. ¬(∃f,g:ℕB ⟶ 𝔹. (((h f) = (h g) ∈ ℤ) ∧ (¬f (h f) = g (h g))))
⊢ ∃n:ℕ. ∀m:𝔹. (R n m)
Latex:
Latex:
1. R : \mBbbN{} {}\mrightarrow{} \mBbbB{} {}\mrightarrow{} \mBbbP{}
2. B : \mBbbN{}
3. h : f:(\mBbbN{}B {}\mrightarrow{} \mBbbB{}) {}\mrightarrow{} \mBbbN{}B
4. \mforall{}f:\mBbbN{}B {}\mrightarrow{} \mBbbB{}. (R (h f) (f (h f)))
5. finite(\mBbbN{}B {}\mrightarrow{} \mBbbB{})
6. \mforall{}[P:(\mBbbN{}B {}\mrightarrow{} \mBbbB{}) {}\mrightarrow{} \mBbbP{}]. ((\mforall{}t:\mBbbN{}B {}\mrightarrow{} \mBbbB{}. Dec(P[t])) {}\mRightarrow{} Dec(\mexists{}t:\mBbbN{}B {}\mrightarrow{} \mBbbB{}. P[t]))
7. \mforall{}[P:(\mBbbN{}B {}\mrightarrow{} \mBbbB{}) {}\mrightarrow{} \mBbbP{}]. ((\mforall{}t:\mBbbN{}B {}\mrightarrow{} \mBbbB{}. Dec(P[t])) {}\mRightarrow{} Dec(\mforall{}t:\mBbbN{}B {}\mrightarrow{} \mBbbB{}. P[t]))
\mvdash{} \mexists{}n:\mBbbN{}. \mforall{}m:\mBbbB{}. (R n m)
By
Latex:
(Decide \mkleeneopen{}\mexists{}f,g:\mBbbN{}B {}\mrightarrow{} \mBbbB{}. (((h f) = (h g)) \mwedge{} (\mneg{}f (h f) = g (h g)))\mkleeneclose{}\mcdot{} THENA Auto)
Home
Index