Nuprl Lemma : Kleene-M_wf
∀[T:{T:Type| (T ⊆r ℕ) ∧ (↓T)} ]. ∀[F:(ℕ ⟶ T) ⟶ ℕ].  (Kleene-M(F) ∈ ⇃(basic-strong-continuity(T;F)))
Proof
Definitions occuring in Statement : 
Kleene-M: Kleene-M(F)
, 
basic-strong-continuity: basic-strong-continuity(T;F)
, 
quotient: x,y:A//B[x; y]
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
squash: ↓T
, 
and: P ∧ Q
, 
true: True
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
bound-domain: bound-domain(f;n;e)
, 
Kleene-M: Kleene-M(F)
, 
sq_exists: ∃x:A [B[x]]
, 
basic-strong-continuity: basic-strong-continuity(T;F)
, 
prop: ℙ
Lemmas referenced : 
sq_stable__subtype_rel, 
nat_wf, 
istype-nat, 
istype-universe, 
subtype_rel_wf, 
squash_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
StrongContinuity2, 
hypothesisEquality, 
setElimination, 
thin, 
rename, 
sqequalHypSubstitution, 
productElimination, 
hypothesis, 
imageElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
extract_by_obid, 
isectElimination, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
Error :functionIsType, 
Error :universeIsType, 
because_Cache, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
Error :setIsType, 
instantiate, 
universeEquality, 
Error :productIsType
Latex:
\mforall{}[T:\{T:Type|  (T  \msubseteq{}r  \mBbbN{})  \mwedge{}  (\mdownarrow{}T)\}  ].  \mforall{}[F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbN{}].
    (Kleene-M(F)  \mmember{}  \00D9(basic-strong-continuity(T;F)))
Date html generated:
2019_06_20-PM-02_50_46
Last ObjectModification:
2019_02_11-AM-11_19_59
Theory : continuity
Home
Index