Nuprl Lemma : Kleene-M_wf

[T:{T:Type| (T ⊆r ℕ) ∧ (↓T)} ]. ∀[F:(ℕ ⟶ T) ⟶ ℕ].  (Kleene-M(F) ∈ ⇃(basic-strong-continuity(T;F)))


Proof




Definitions occuring in Statement :  Kleene-M: Kleene-M(F) basic-strong-continuity: basic-strong-continuity(T;F) quotient: x,y:A//B[x; y] nat: subtype_rel: A ⊆B uall: [x:A]. B[x] squash: T and: P ∧ Q true: True member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q squash: T sq_stable: SqStable(P) implies:  Q bound-domain: bound-domain(f;n;e) Kleene-M: Kleene-M(F) sq_exists: x:A [B[x]] basic-strong-continuity: basic-strong-continuity(T;F) prop:
Lemmas referenced :  sq_stable__subtype_rel nat_wf istype-nat istype-universe subtype_rel_wf squash_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut StrongContinuity2 hypothesisEquality setElimination thin rename sqequalHypSubstitution productElimination hypothesis imageElimination sqequalRule imageMemberEquality baseClosed extract_by_obid isectElimination independent_functionElimination equalityTransitivity equalitySymmetry axiomEquality Error :functionIsType,  Error :universeIsType,  because_Cache Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  Error :inhabitedIsType,  Error :setIsType,  instantiate universeEquality Error :productIsType

Latex:
\mforall{}[T:\{T:Type|  (T  \msubseteq{}r  \mBbbN{})  \mwedge{}  (\mdownarrow{}T)\}  ].  \mforall{}[F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbN{}].
    (Kleene-M(F)  \mmember{}  \00D9(basic-strong-continuity(T;F)))



Date html generated: 2019_06_20-PM-02_50_46
Last ObjectModification: 2019_02_11-AM-11_19_59

Theory : continuity


Home Index