Nuprl Lemma : axiom-choice-00-quot

P:ℕ ⟶ ℕ ⟶ ℙ((∀n:ℕ. ⇃(∃m:ℕ(P m)))  ⇃(∃f:ℕ ⟶ ℕ. ∀n:ℕ(P (f n))))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] nat: prop: all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a nat:
Lemmas referenced :  axiom-choice-quot int_subtype_base le_wf set_subtype_base canonicalizable-base canonicalizable_wf trivial-quotient-true equiv_rel_true true_wf exists_wf quotient_wf nat_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule lambdaEquality because_Cache applyEquality hypothesisEquality independent_isectElimination functionEquality cumulativity universeEquality independent_functionElimination intEquality natural_numberEquality dependent_functionElimination

Latex:
\mforall{}P:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}n:\mBbbN{}.  \00D9(\mexists{}m:\mBbbN{}.  (P  n  m)))  {}\mRightarrow{}  \00D9(\mexists{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}n:\mBbbN{}.  (P  n  (f  n))))



Date html generated: 2016_05_14-PM-09_42_35
Last ObjectModification: 2016_01_06-PM-01_29_29

Theory : continuity


Home Index