Step
*
1
1
of Lemma
better-not-not-Ramsey
1. R : ℕ ⟶ ℕ ⟶ ℙ
2. ∀[s:StrictInc]. ⇃(∃n,m,p,q:ℕ. ((n < m ∧ R[s n;s m]) ∧ p < q ∧ (¬R[s p;s q])))
3. ∀s:StrictInc. ⇃(∃m:ℕ. ∃n,p:{m + 1...}. (R[s m;s n] ∧ (¬R[s m;s p])))
4. ¬(∀s:StrictInc. ∃n:ℕ. (¬homogeneous(R;n;s)))
⊢ False
BY
{ Assert ⌜⇃(∀s:StrictInc. ∃m:ℕ. ∃n,p:{m + 1...}. (R[s m;s n] ∧ (¬R[s m;s p])))⌝⋅ }
1
.....assertion..... 
1. R : ℕ ⟶ ℕ ⟶ ℙ
2. ∀[s:StrictInc]. ⇃(∃n,m,p,q:ℕ. ((n < m ∧ R[s n;s m]) ∧ p < q ∧ (¬R[s p;s q])))
3. ∀s:StrictInc. ⇃(∃m:ℕ. ∃n,p:{m + 1...}. (R[s m;s n] ∧ (¬R[s m;s p])))
4. ¬(∀s:StrictInc. ∃n:ℕ. (¬homogeneous(R;n;s)))
⊢ ⇃(∀s:StrictInc. ∃m:ℕ. ∃n,p:{m + 1...}. (R[s m;s n] ∧ (¬R[s m;s p])))
2
1. R : ℕ ⟶ ℕ ⟶ ℙ
2. ∀[s:StrictInc]. ⇃(∃n,m,p,q:ℕ. ((n < m ∧ R[s n;s m]) ∧ p < q ∧ (¬R[s p;s q])))
3. ∀s:StrictInc. ⇃(∃m:ℕ. ∃n,p:{m + 1...}. (R[s m;s n] ∧ (¬R[s m;s p])))
4. ¬(∀s:StrictInc. ∃n:ℕ. (¬homogeneous(R;n;s)))
5. ⇃(∀s:StrictInc. ∃m:ℕ. ∃n,p:{m + 1...}. (R[s m;s n] ∧ (¬R[s m;s p])))
⊢ False
Latex:
Latex:
1.  R  :  \mBbbN{}  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}
2.  \mforall{}[s:StrictInc].  \00D9(\mexists{}n,m,p,q:\mBbbN{}.  ((n  <  m  \mwedge{}  R[s  n;s  m])  \mwedge{}  p  <  q  \mwedge{}  (\mneg{}R[s  p;s  q])))
3.  \mforall{}s:StrictInc.  \00D9(\mexists{}m:\mBbbN{}.  \mexists{}n,p:\{m  +  1...\}.  (R[s  m;s  n]  \mwedge{}  (\mneg{}R[s  m;s  p])))
4.  \mneg{}(\mforall{}s:StrictInc.  \mexists{}n:\mBbbN{}.  (\mneg{}homogeneous(R;n;s)))
\mvdash{}  False
By
Latex:
Assert  \mkleeneopen{}\00D9(\mforall{}s:StrictInc.  \mexists{}m:\mBbbN{}.  \mexists{}n,p:\{m  +  1...\}.  (R[s  m;s  n]  \mwedge{}  (\mneg{}R[s  m;s  p])))\mkleeneclose{}\mcdot{}
Home
Index