Nuprl Lemma : better-not-not-Ramsey

[R:ℕ ⟶ ℕ ⟶ ℙ]. (∀[s:StrictInc]. ⇃(∃n,m,p,q:ℕ((n < m ∧ R[s n;s m]) ∧ p < q ∧ R[s p;s q])))))


Proof




Definitions occuring in Statement :  strict-inc: StrictInc quotient: x,y:A//B[x; y] nat: less_than: a < b uall: [x:A]. B[x] prop: so_apply: x[s1;s2] exists: x:A. B[x] not: ¬A and: P ∧ Q true: True apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False all: x:A. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] b-almost-full: b-almost-full(n,m.R[n; m]) so_lambda: λ2x.t[x] prop: and: P ∧ Q nat: strict-inc: StrictInc subtype_rel: A ⊆B so_apply: x[s] guard: {T} int_upper: {i...} ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) homogeneous: homogeneous(R;n;s) int_seg: {i..j-} lelt: i ≤ j < k
Lemmas referenced :  b-almost-full-intersection-lemma nat_wf not_wf implies-quotient-true exists_wf less_than_wf int_upper_wf int_upper_subtype_nat int_upper_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf intformless_wf int_formula_prop_less_lemma uall_wf strict-inc_wf quotient_wf true_wf equiv_rel_true not-not-Ramsey all-quotient-true trivial-quotient-true canonicalizable_wf canonicalizable-set all_wf int_seg_wf canonicalizable-nat-to-nat not-quotient-true imax_wf imax_nat add_nat_wf false_wf intformeq_wf int_formula_prop_eq_lemma equal_wf homogeneous_wf subtype_rel_dep_function int_seg_subtype_nat subtype_rel_self lelt_wf decidable__lt imax_strict_ub or_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin extract_by_obid sqequalHypSubstitution dependent_functionElimination sqequalRule lambdaEquality applyEquality functionExtensionality hypothesisEquality hypothesis isectElimination independent_functionElimination because_Cache productEquality setElimination rename addEquality natural_numberEquality dependent_set_memberEquality applyLambdaEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll productElimination universeEquality functionEquality cumulativity equalityTransitivity equalitySymmetry inlFormation inrFormation addLevel orFunctionality

Latex:
\mforall{}[R:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  (\mneg{}(\mforall{}[s:StrictInc].  \00D9(\mexists{}n,m,p,q:\mBbbN{}.  ((n  <  m  \mwedge{}  R[s  n;s  m])  \mwedge{}  p  <  q  \mwedge{}  (\mneg{}R[s  p;s  q])))))



Date html generated: 2017_04_20-AM-07_26_24
Last ObjectModification: 2017_02_27-PM-06_00_06

Theory : continuity


Home Index