Nuprl Lemma : better-not-not-Ramsey
∀[R:ℕ ⟶ ℕ ⟶ ℙ]. (¬(∀[s:StrictInc]. ⇃(∃n,m,p,q:ℕ. ((n < m ∧ R[s n;s m]) ∧ p < q ∧ (¬R[s p;s q])))))
Proof
Definitions occuring in Statement : 
strict-inc: StrictInc
, 
quotient: x,y:A//B[x; y]
, 
nat: ℕ
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
true: True
, 
apply: f a
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
b-almost-full: b-almost-full(n,m.R[n; m])
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
nat: ℕ
, 
strict-inc: StrictInc
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
guard: {T}
, 
int_upper: {i...}
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
homogeneous: homogeneous(R;n;s)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
Lemmas referenced : 
b-almost-full-intersection-lemma, 
nat_wf, 
not_wf, 
implies-quotient-true, 
exists_wf, 
less_than_wf, 
int_upper_wf, 
int_upper_subtype_nat, 
int_upper_properties, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
intformless_wf, 
int_formula_prop_less_lemma, 
uall_wf, 
strict-inc_wf, 
quotient_wf, 
true_wf, 
equiv_rel_true, 
not-not-Ramsey, 
all-quotient-true, 
trivial-quotient-true, 
canonicalizable_wf, 
canonicalizable-set, 
all_wf, 
int_seg_wf, 
canonicalizable-nat-to-nat, 
not-quotient-true, 
imax_wf, 
imax_nat, 
add_nat_wf, 
false_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
equal_wf, 
homogeneous_wf, 
subtype_rel_dep_function, 
int_seg_subtype_nat, 
subtype_rel_self, 
lelt_wf, 
decidable__lt, 
imax_strict_ub, 
or_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
hypothesis, 
isectElimination, 
independent_functionElimination, 
because_Cache, 
productEquality, 
setElimination, 
rename, 
addEquality, 
natural_numberEquality, 
dependent_set_memberEquality, 
applyLambdaEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
productElimination, 
universeEquality, 
functionEquality, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
inlFormation, 
inrFormation, 
addLevel, 
orFunctionality
Latex:
\mforall{}[R:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  (\mneg{}(\mforall{}[s:StrictInc].  \00D9(\mexists{}n,m,p,q:\mBbbN{}.  ((n  <  m  \mwedge{}  R[s  n;s  m])  \mwedge{}  p  <  q  \mwedge{}  (\mneg{}R[s  p;s  q])))))
Date html generated:
2017_04_20-AM-07_26_24
Last ObjectModification:
2017_02_27-PM-06_00_06
Theory : continuity
Home
Index