Nuprl Lemma : choice-principle_wf

[T:Type]. (ChoicePrinciple(T) ∈ 𝕌')


Proof




Definitions occuring in Statement :  choice-principle: ChoicePrinciple(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T choice-principle: ChoicePrinciple(T) prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a all: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q implies:  Q and: P ∧ Q
Lemmas referenced :  equiv_rel_true true_wf quotient_wf iff_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination functionEquality cumulativity hypothesisEquality universeEquality lambdaEquality applyEquality hypothesis because_Cache independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  (ChoicePrinciple(T)  \mmember{}  \mBbbU{}')



Date html generated: 2016_05_14-PM-09_42_14
Last ObjectModification: 2016_01_11-PM-02_11_15

Theory : continuity


Home Index