Step
*
1
1
1
1
2
of Lemma
general-cantor-to-int-uniform-continuity
1. B : ℕ ⟶ ℕ+
2. F : (k:ℕ ⟶ ℕB[k]) ⟶ ℤ
3. n : ℕ
4. ∀f,g:i:ℕ ⟶ ℕB[i]. ((f = g ∈ (i:ℕn ⟶ ℕB[i]))
⇒ ((F f) = (F g) ∈ ℤ))
5. j : ℕ
6. ¬j < n
⊢ Dec(∀f,g:i:ℕ ⟶ ℕB[i]. ((f = g ∈ (i:ℕj ⟶ ℕB[i]))
⇒ ((F f) = (F g) ∈ ℤ)))
BY
{ ((OrLeft THENA Auto) THEN ParallelOp -3 THEN RepeatFor 3 (ParallelLast)) }
Latex:
Latex:
1. B : \mBbbN{} {}\mrightarrow{} \mBbbN{}\msupplus{}
2. F : (k:\mBbbN{} {}\mrightarrow{} \mBbbN{}B[k]) {}\mrightarrow{} \mBbbZ{}
3. n : \mBbbN{}
4. \mforall{}f,g:i:\mBbbN{} {}\mrightarrow{} \mBbbN{}B[i]. ((f = g) {}\mRightarrow{} ((F f) = (F g)))
5. j : \mBbbN{}
6. \mneg{}j < n
\mvdash{} Dec(\mforall{}f,g:i:\mBbbN{} {}\mrightarrow{} \mBbbN{}B[i]. ((f = g) {}\mRightarrow{} ((F f) = (F g))))
By
Latex:
((OrLeft THENA Auto) THEN ParallelOp -3 THEN RepeatFor 3 (ParallelLast))
Home
Index