Nuprl Lemma : general-cantor-to-int-uniform-continuity
∀B:ℕ ⟶ ℕ+. ∀F:(k:ℕ ⟶ ℕB[k]) ⟶ ℤ.  ∃n:ℕ. ∀f,g:k:ℕ ⟶ ℕB[k].  ((f = g ∈ (k:ℕn ⟶ ℕB[k])) ⇒ ((F f) = (F g) ∈ ℤ))
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}, 
nat_plus: ℕ+, 
nat: ℕ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
so_apply: x[s1;s2], 
so_lambda: λ2x y.t[x; y], 
gt: i > j, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
assert: ↑b, 
bnot: ¬bb, 
sq_type: SQType(T), 
bfalse: ff, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
cand: A c∧ B, 
guard: {T}, 
istype: istype(T), 
top: Top, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
or: P ∨ Q, 
decidable: Dec(P), 
ge: i ≥ j , 
squash: ↓T, 
less_than: a < b, 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
not: ¬A, 
false: False, 
less_than': less_than'(a;b), 
and: P ∧ Q, 
le: A ≤ B, 
uimplies: b supposing a, 
nat: ℕ, 
prop: ℙ, 
implies: P ⇒ Q, 
so_lambda: λ2x.t[x], 
nat_plus: ℕ+, 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x]
Lemmas referenced : 
le_witness, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
prop-truncation-implies, 
mu-dec-property, 
it_wf, 
unit_wf2, 
mu-dec_wf, 
change-equality-type, 
respects-equality-trivial, 
not-gt-2, 
respects-equality-function, 
subtype_rel_transitivity, 
istype-universe, 
true_wf, 
squash_wf, 
decidable__equal_int, 
decidable__not, 
decidable__and2, 
nat_plus_properties, 
less_than_wf, 
assert_wf, 
iff_weakening_uiff, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_lt_int, 
eqtt_to_assert, 
lt_int_wf, 
not_wf, 
decidable-exists-finite, 
istype-less_than, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__equal_int_seg, 
lelt_wf, 
set_subtype_base, 
le_weakening2, 
int_seg_subtype, 
decidable__all_int_seg, 
nat_plus_subtype_nat, 
nsub_finite, 
finite-function, 
decidable__lt, 
le_wf, 
int_subtype_base, 
equal-wf-base, 
istype-le, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
int_seg_properties, 
subtype_rel_dep_function, 
istype-false, 
int_seg_subtype_nat, 
equal_wf, 
all_wf, 
nat_wf, 
exists_wf, 
implies-quotient-true, 
istype-int, 
nat_plus_wf, 
int_seg_wf, 
istype-nat, 
general-cantor-to-int-uniform-continuity-half-squashed
Rules used in proof : 
independent_pairEquality, 
dependent_pairEquality_alt, 
baseClosed, 
imageMemberEquality, 
universeEquality, 
hyp_replacement, 
functionExtensionality_alt, 
cumulativity, 
promote_hyp, 
equalityElimination, 
applyLambdaEquality, 
equalityTransitivity, 
inrFormation_alt, 
functionExtensionality, 
inlFormation_alt, 
instantiate, 
equalitySymmetry, 
sqequalBase, 
equalityIstype, 
productIsType, 
productEquality, 
intEquality, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
unionElimination, 
imageElimination, 
dependent_set_memberEquality_alt, 
productElimination, 
inhabitedIsType, 
independent_pairFormation, 
independent_isectElimination, 
closedConclusion, 
because_Cache, 
functionEquality, 
sqequalRule, 
rename, 
setElimination, 
lambdaEquality_alt, 
applyEquality, 
natural_numberEquality, 
isectElimination, 
universeIsType, 
functionIsType, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}B:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}\msupplus{}.  \mforall{}F:(k:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}B[k])  {}\mrightarrow{}  \mBbbZ{}.    \mexists{}n:\mBbbN{}.  \mforall{}f,g:k:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}B[k].    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g)))
Date html generated:
2019_10_15-AM-10_26_13
Last ObjectModification:
2019_10_08-PM-05_31_18
Theory : continuity
Home
Index