Nuprl Lemma : mu-dec-property

[A:Type]. ∀[P:A ⟶ ℕ ⟶ ℙ].
  ∀d:a:A ⟶ k:ℕ ⟶ Dec(P[a;k]). ∀a:A.  ((↓∃k:ℕP[a;k])  {P[a;mu-dec(d;a)] ∧ (∀i:ℕmu-dec(d;a). P[a;i]))})


Proof




Definitions occuring in Statement :  mu-dec: mu-dec(d;a) int_seg: {i..j-} nat: decidable: Dec(P) uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] not: ¬A squash: T implies:  Q and: P ∧ Q function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q uimplies: supposing a so_apply: x[s1;s2] guard: {T} squash: T so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] prop: subtype_rel: A ⊆B nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A cand: c∧ B mu-dec: mu-dec(d;a) decidable: Dec(P) or: P ∨ Q isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt true: True bfalse: ff int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top sq_stable: SqStable(P)
Lemmas referenced :  true_wf sq_stable__not sq_stable__all sq_stable_from_decidable sq_stable__and int_formula_prop_wf int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt le_wf nat_properties int_seg_properties assert_wf equal_wf isl_wf mu-property false_wf int_seg_subtype_nat not_wf int_seg_wf all_wf decidable_wf nat_wf exists_wf squash_wf mu-dec_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation independent_isectElimination introduction applyEquality imageElimination sqequalRule lambdaEquality functionEquality cumulativity universeEquality isect_memberEquality natural_numberEquality equalityTransitivity equalitySymmetry setElimination rename because_Cache independent_pairFormation productElimination dependent_pairFormation unionEquality unionElimination independent_functionElimination voidElimination dependent_functionElimination setEquality intEquality int_eqEquality voidEquality computeAll imageMemberEquality baseClosed

Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}d:a:A  {}\mrightarrow{}  k:\mBbbN{}  {}\mrightarrow{}  Dec(P[a;k]).  \mforall{}a:A.
        ((\mdownarrow{}\mexists{}k:\mBbbN{}.  P[a;k])  {}\mRightarrow{}  \{P[a;mu-dec(d;a)]  \mwedge{}  (\mforall{}i:\mBbbN{}mu-dec(d;a).  (\mneg{}P[a;i]))\})



Date html generated: 2016_05_14-AM-07_30_20
Last ObjectModification: 2016_01_14-PM-09_58_47

Theory : int_2


Home Index