Nuprl Lemma : mu-property
∀[f:ℕ ⟶ 𝔹]. {(↑(f mu(f))) ∧ (∀[i:ℕ]. ¬↑(f i) supposing i < mu(f))} supposing ∃n:ℕ. (↑(f n))
Proof
Definitions occuring in Statement : 
mu: mu(f), 
nat: ℕ, 
assert: ↑b, 
bool: 𝔹, 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
guard: {T}, 
exists: ∃x:A. B[x], 
not: ¬A, 
and: P ∧ Q, 
apply: f a, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
int_upper: {i...}, 
nat: ℕ, 
all: ∀x:A. B[x], 
mu: mu(f), 
exists: ∃x:A. B[x], 
prop: ℙ, 
guard: {T}, 
and: P ∧ Q, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B
Lemmas referenced : 
mu-ge-property, 
subtype_rel_dep_function, 
nat_wf, 
bool_wf, 
int_upper_wf, 
subtype_rel_self, 
assert_wf, 
less_than_wf, 
mu_wf, 
assert_witness, 
exists_wf, 
lelt_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
natural_numberEquality, 
isect_memberFormation, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
independent_isectElimination, 
because_Cache, 
lambdaFormation, 
introduction, 
productElimination, 
dependent_pairFormation, 
independent_pairFormation, 
promote_hyp, 
independent_functionElimination, 
voidElimination, 
dependent_functionElimination, 
setElimination, 
rename, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairEquality, 
functionEquality, 
dependent_set_memberEquality
Latex:
\mforall{}[f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}].  \{(\muparrow{}(f  mu(f)))  \mwedge{}  (\mforall{}[i:\mBbbN{}].  \mneg{}\muparrow{}(f  i)  supposing  i  <  mu(f))\}  supposing  \mexists{}n:\mBbbN{}.  (\muparrow{}(f  n))
Date html generated:
2016_05_14-AM-07_29_45
Last ObjectModification:
2015_12_26-PM-01_26_31
Theory : int_2
Home
Index