Nuprl Lemma : mu-dec_wf

[A:Type]. ∀[P:A ⟶ ℕ ⟶ ℙ]. ∀[d:a:A ⟶ k:ℕ ⟶ Dec(P[a;k])]. ∀[a:A].  mu-dec(d;a) ∈ ℕ supposing ↓∃k:ℕP[a;k]


Proof




Definitions occuring in Statement :  mu-dec: mu-dec(d;a) nat: decidable: Dec(P) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] exists: x:A. B[x] squash: T member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  squash: T member: t ∈ T mu-dec: mu-dec(d;a) uall: [x:A]. B[x] so_apply: x[s1;s2] subtype_rel: A ⊆B prop: uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] implies:  Q all: x:A. B[x] or: P ∨ Q decidable: Dec(P) true: True btrue: tt ifthenelse: if then else fi  assert: b isl: isl(x) false: False not: ¬A
Lemmas referenced :  mu_wf isl_wf not_wf nat_wf squash_wf exists_wf decidable_wf assert_wf subtype_rel_self equal_wf
Rules used in proof :  sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity imageElimination cut introduction extract_by_obid isectElimination thin Error :lambdaEquality_alt,  applyEquality functionExtensionality hypothesisEquality cumulativity hypothesis because_Cache sqequalRule Error :universeIsType,  independent_isectElimination Error :functionIsType,  universeEquality Error :isect_memberFormation_alt,  axiomEquality equalityTransitivity equalitySymmetry Error :isect_memberEquality_alt,  productElimination Error :dependent_pairFormation_alt,  independent_functionElimination dependent_functionElimination lambdaFormation lemma_by_obid unionElimination natural_numberEquality voidElimination Error :inhabitedIsType,  Error :lambdaFormation_alt,  instantiate Error :equalityIsType1

Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[d:a:A  {}\mrightarrow{}  k:\mBbbN{}  {}\mrightarrow{}  Dec(P[a;k])].  \mforall{}[a:A].
    mu-dec(d;a)  \mmember{}  \mBbbN{}  supposing  \mdownarrow{}\mexists{}k:\mBbbN{}.  P[a;k]



Date html generated: 2019_06_20-PM-01_17_27
Last ObjectModification: 2018_10_03-PM-10_14_54

Theory : int_2


Home Index