Nuprl Lemma : mu-dec_wf
∀[A:Type]. ∀[P:A ⟶ ℕ ⟶ ℙ]. ∀[d:a:A ⟶ k:ℕ ⟶ Dec(P[a;k])]. ∀[a:A].  mu-dec(d;a) ∈ ℕ supposing ↓∃k:ℕ. P[a;k]
Proof
Definitions occuring in Statement : 
mu-dec: mu-dec(d;a)
, 
nat: ℕ
, 
decidable: Dec(P)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
squash: ↓T
, 
member: t ∈ T
, 
mu-dec: mu-dec(d;a)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
true: True
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
isl: isl(x)
, 
false: False
, 
not: ¬A
Lemmas referenced : 
mu_wf, 
isl_wf, 
not_wf, 
nat_wf, 
squash_wf, 
exists_wf, 
decidable_wf, 
assert_wf, 
subtype_rel_self, 
equal_wf
Rules used in proof : 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
imageElimination, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
Error :lambdaEquality_alt, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
cumulativity, 
hypothesis, 
because_Cache, 
sqequalRule, 
Error :universeIsType, 
independent_isectElimination, 
Error :functionIsType, 
universeEquality, 
Error :isect_memberFormation_alt, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :isect_memberEquality_alt, 
productElimination, 
Error :dependent_pairFormation_alt, 
independent_functionElimination, 
dependent_functionElimination, 
lambdaFormation, 
lemma_by_obid, 
unionElimination, 
natural_numberEquality, 
voidElimination, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
instantiate, 
Error :equalityIsType1
Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[d:a:A  {}\mrightarrow{}  k:\mBbbN{}  {}\mrightarrow{}  Dec(P[a;k])].  \mforall{}[a:A].
    mu-dec(d;a)  \mmember{}  \mBbbN{}  supposing  \mdownarrow{}\mexists{}k:\mBbbN{}.  P[a;k]
Date html generated:
2019_06_20-PM-01_17_27
Last ObjectModification:
2018_10_03-PM-10_14_54
Theory : int_2
Home
Index