Nuprl Lemma : init0-zero-seq

init0(0s)


Proof




Definitions occuring in Statement :  init0: init0(a) zero-seq: 0s
Definitions unfolded in proof :  implies:  Q not: ¬A less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B nat: false: False prop: top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a uall: [x:A]. B[x] or: P ∨ Q decidable: Dec(P) member: t ∈ T all: x:A. B[x] init0: init0(a) zero-seq: 0s
Lemmas referenced :  le_wf false_wf int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermConstant_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt decidable__equal_int
Rules used in proof :  lambdaFormation independent_pairFormation equalitySymmetry equalityTransitivity dependent_set_memberEquality computeAll hypothesisEquality voidEquality voidElimination isect_memberEquality intEquality lambdaEquality dependent_pairFormation independent_isectElimination isectElimination unionElimination hypothesis because_Cache natural_numberEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut sqequalRule sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
init0(0s)



Date html generated: 2017_04_21-AM-11_23_05
Last ObjectModification: 2017_04_20-PM-04_48_51

Theory : continuity


Home Index