Nuprl Lemma : is-absolutely-free_wf

[a:ℕ ⟶ ℕ]. (is-absolutely-free{i:l}(a) ∈ ℙ')


Proof




Definitions occuring in Statement :  is-absolutely-free: is-absolutely-free{i:l}(f) nat: uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T is-absolutely-free: is-absolutely-free{i:l}(f) subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] implies:  Q nat: so_apply: x[s] uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A all: x:A. B[x] exists: x:A. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  all_wf nat_wf quotient_wf exists_wf equal_wf int_seg_wf subtype_rel_dep_function int_seg_subtype_nat false_wf subtype_rel_self true_wf equiv_rel_true
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin instantiate extract_by_obid sqequalHypSubstitution isectElimination functionEquality hypothesis applyEquality lambdaEquality cumulativity hypothesisEquality universeEquality because_Cache functionExtensionality natural_numberEquality setElimination rename independent_isectElimination independent_pairFormation lambdaFormation axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  (is-absolutely-free\{i:l\}(a)  \mmember{}  \mBbbP{}')



Date html generated: 2017_09_29-PM-06_09_18
Last ObjectModification: 2017_04_22-PM-05_25_35

Theory : continuity


Home Index