Nuprl Lemma : is-absolutely-free_wf
∀[a:ℕ ⟶ ℕ]. (is-absolutely-free{i:l}(a) ∈ ℙ')
Proof
Definitions occuring in Statement : 
is-absolutely-free: is-absolutely-free{i:l}(f)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
is-absolutely-free: is-absolutely-free{i:l}(f)
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
all_wf, 
nat_wf, 
quotient_wf, 
exists_wf, 
equal_wf, 
int_seg_wf, 
subtype_rel_dep_function, 
int_seg_subtype_nat, 
false_wf, 
subtype_rel_self, 
true_wf, 
equiv_rel_true
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
functionEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
cumulativity, 
hypothesisEquality, 
universeEquality, 
because_Cache, 
functionExtensionality, 
natural_numberEquality, 
setElimination, 
rename, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  (is-absolutely-free\{i:l\}(a)  \mmember{}  \mBbbP{}')
Date html generated:
2017_09_29-PM-06_09_18
Last ObjectModification:
2017_04_22-PM-05_25_35
Theory : continuity
Home
Index