Step * 1 1 1 of Lemma monotone-bar-induction3


1. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  (∀m:ℕB[n 1;s.m@n]))
4. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  ⇃(Q[n;s]))
5. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. ⇃(Q[n 1;s.m@n]))  ⇃(Q[n;s]))
6. bar : ∀alpha:ℕ ⟶ ℕ. ⇃(∃m:ℕB[m;alpha])
7. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
8. ∀f:ℕ ⟶ ℕ
     ∃n:ℕ. ∃k:ℕn. ((B f) ∧ ((M f) (inl k) ∈ (ℕ?)) ∧ (∀m:ℕ((↑isl(M f))  ((M f) (inl k) ∈ (ℕ?)))))
⊢ ⇃(Q[0;λx.⊥])
BY
(InstLemma `basic_bar_induction` [⌜ℕ⌝;⌜λ2f.↑isl(M f)⌝;⌜λ2s.⇃(Q[n;s])⌝]⋅ THEN Auto) }

1
1. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  (∀m:ℕB[n 1;s.m@n]))
4. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  ⇃(Q[n;s]))
5. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. ⇃(Q[n 1;s.m@n]))  ⇃(Q[n;s]))
6. bar : ∀alpha:ℕ ⟶ ℕ. ⇃(∃m:ℕB[m;alpha])
7. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
8. ∀f:ℕ ⟶ ℕ
     ∃n:ℕ. ∃k:ℕn. ((B f) ∧ ((M f) (inl k) ∈ (ℕ?)) ∧ (∀m:ℕ((↑isl(M f))  ((M f) (inl k) ∈ (ℕ?)))))
9. : ℕ
10. : ℕn ⟶ ℕ
11. ↑isl(M s)
⊢ ⇃(Q[n;s])

2
1. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  (∀m:ℕB[n 1;s.m@n]))
4. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  ⇃(Q[n;s]))
5. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. ⇃(Q[n 1;s.m@n]))  ⇃(Q[n;s]))
6. bar : ∀alpha:ℕ ⟶ ℕ. ⇃(∃m:ℕB[m;alpha])
7. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
8. ∀f:ℕ ⟶ ℕ
     ∃n:ℕ. ∃k:ℕn. ((B f) ∧ ((M f) (inl k) ∈ (ℕ?)) ∧ (∀m:ℕ((↑isl(M f))  ((M f) (inl k) ∈ (ℕ?)))))
9. : ℕ
10. : ℕn ⟶ ℕ
11. ∀t:ℕ. ⇃(Q[n 1;s++t])
⊢ ⇃(Q[n;s])

3
1. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  (∀m:ℕB[n 1;s.m@n]))
4. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  ⇃(Q[n;s]))
5. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. ⇃(Q[n 1;s.m@n]))  ⇃(Q[n;s]))
6. bar : ∀alpha:ℕ ⟶ ℕ. ⇃(∃m:ℕB[m;alpha])
7. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
8. ∀f:ℕ ⟶ ℕ
     ∃n:ℕ. ∃k:ℕn. ((B f) ∧ ((M f) (inl k) ∈ (ℕ?)) ∧ (∀m:ℕ((↑isl(M f))  ((M f) (inl k) ∈ (ℕ?)))))
9. alpha : ℕ ⟶ ℕ
⊢ ↓∃m:ℕ(↑isl(M alpha))


Latex:


Latex:

1.  B  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}
2.  Q  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}
3.  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  (\mforall{}m:\mBbbN{}.  B[n  +  1;s.m@n]))
4.  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  \00D9(Q[n;s]))
5.  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  \00D9(Q[n  +  1;s.m@n]))  {}\mRightarrow{}  \00D9(Q[n;s]))
6.  bar  :  \mforall{}alpha:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}m:\mBbbN{}.  B[m;alpha])
7.  M  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}n?)
8.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
          \mexists{}n:\mBbbN{}.  \mexists{}k:\mBbbN{}n.  ((B  k  f)  \mwedge{}  ((M  n  f)  =  (inl  k))  \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  ((M  m  f)  =  (inl  k)))))
\mvdash{}  \00D9(Q[0;\mlambda{}x.\mbot{}])


By


Latex:
(InstLemma  `basic\_bar\_induction`  [\mkleeneopen{}\mBbbN{}\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}n  f.\muparrow{}isl(M  n  f)\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}n  s.\00D9(Q[n;s])\mkleeneclose{}]\mcdot{}  THEN  Auto)




Home Index