Nuprl Lemma : monotone-bar-induction3

B,Q:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ.
  ((∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  (∀m:ℕB[n 1;s.m@n])))
   (∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  ⇃(Q[n;s])))
   (∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. ⇃(Q[n 1;s.m@n]))  ⇃(Q[n;s])))
   (∀alpha:ℕ ⟶ ℕ. ⇃(∃m:ℕB[m;alpha]))
   ⇃(Q[0;λx.⊥]))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] seq-add: s.x@n int_seg: {i..j-} nat: bottom: prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T subtype_rel: A ⊆B uall: [x:A]. B[x] nat: uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A so_apply: x[s1;s2] prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] ge: i ≥  decidable: Dec(P) or: P ∨ Q squash: T true: True ext2Baire: ext2Baire(n;f;d) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q cand: c∧ B outl: outl(x) sq_stable: SqStable(P) subtract: m seq-add: s.x@n nequal: a ≠ b ∈  seq-adjoin: s++t seq-append: seq-append(n;m;s1;s2) less_than: a < b quotient: x,y:A//B[x; y] isl: isl(x)
Lemmas referenced :  strong-continuity-rel nat_wf subtype_rel_function int_seg_wf int_seg_subtype_nat istype-void subtype_rel_self prop-truncation-quot istype-false le_wf int_seg_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf quotient_wf exists_wf true_wf equiv_rel_true nat_properties decidable__le intformnot_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_add_lemma seq-add_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma unit_wf2 subtype_rel_union set_subtype_base lelt_wf int_subtype_base assert_wf isl_wf basic_bar_induction decidable__assert seq-adjoin_wf ext2Baire_wf squash_wf bool_wf lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot iff_weakening_uiff less_than_wf iff_imp_equal_bool btrue_wf bfalse_wf btrue_neq_bfalse decidable__lt equal_wf int_seg_subtype sq_stable__le le_weakening2 subtract_wf itermSubtract_wf int_term_value_subtract_lemma primrec-wf2 add-zero not-le-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-commutes add_functionality_wrt_le le-add-cancel2 add-member-int_seg2 subtract-add-cancel eq_int_wf assert_of_eq_int decidable__equal_nat neg_assert_of_eq_int add-mul-special zero-mul zero-add istype-top quotient-member-eq equal-wf-base member_wf implies-quotient-true all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  rename cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin Error :lambdaEquality_alt,  applyEquality functionExtensionality hypothesisEquality hypothesis isectElimination because_Cache natural_numberEquality setElimination independent_isectElimination sqequalRule independent_pairFormation Error :universeIsType,  Error :functionIsType,  Error :inhabitedIsType,  Error :dependent_set_memberEquality_alt,  productElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination Error :productIsType,  instantiate universeEquality addEquality unionElimination equalityTransitivity equalitySymmetry Error :unionIsType,  Error :equalityIsType3,  baseApply closedConclusion baseClosed intEquality imageElimination imageMemberEquality hyp_replacement Error :functionExtensionality_alt,  equalityElimination Error :equalityIsType1,  promote_hyp cumulativity applyLambdaEquality Error :equalityIsType4,  unionEquality Error :inlEquality_alt,  Error :inrEquality_alt,  Error :setIsType,  functionEquality minusEquality int_eqReduceTrueSq int_eqReduceFalseSq lessCases Error :isect_memberFormation_alt,  axiomSqEquality pointwiseFunctionality pertypeElimination productEquality

Latex:
\mforall{}B,Q:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}.
    ((\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  (\mforall{}m:\mBbbN{}.  B[n  +  1;s.m@n])))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  \00D9(Q[n;s])))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  \00D9(Q[n  +  1;s.m@n]))  {}\mRightarrow{}  \00D9(Q[n;s])))
    {}\mRightarrow{}  (\mforall{}alpha:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}m:\mBbbN{}.  B[m;alpha]))
    {}\mRightarrow{}  \00D9(Q[0;\mlambda{}x.\mbot{}]))



Date html generated: 2019_06_20-PM-02_55_21
Last ObjectModification: 2018_10_04-PM-02_28_05

Theory : continuity


Home Index