Nuprl Lemma : prop-truncation-quot

T:Type. (⇃(⇃(T))  ⇃(T))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] all: x:A. B[x] implies:  Q true: True universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a prop: true: True cand: c∧ B quotient: x,y:A//B[x; y] and: P ∧ Q squash: T subtype_rel: A ⊆B
Lemmas referenced :  prop-truncation-implies quotient_wf true_wf equiv_rel_true equal-wf-base equal_wf squash_wf quotient-member-eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination because_Cache sqequalRule lambdaEquality hypothesis independent_isectElimination independent_functionElimination cumulativity hypothesisEquality universeEquality promote_hyp natural_numberEquality independent_pairFormation pointwiseFunctionality pertypeElimination productElimination productEquality applyEquality imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed

Latex:
\mforall{}T:Type.  (\00D9(\00D9(T))  {}\mRightarrow{}  \00D9(T))



Date html generated: 2017_04_17-AM-09_57_39
Last ObjectModification: 2017_02_27-PM-05_50_51

Theory : continuity


Home Index