Nuprl Lemma : prop-truncation-quot
∀T:Type. (⇃(⇃(T)) 
⇒ ⇃(T))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
true: True
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
true: True
, 
cand: A c∧ B
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
prop-truncation-implies, 
quotient_wf, 
true_wf, 
equiv_rel_true, 
equal-wf-base, 
equal_wf, 
squash_wf, 
quotient-member-eq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
independent_isectElimination, 
independent_functionElimination, 
cumulativity, 
hypothesisEquality, 
universeEquality, 
promote_hyp, 
natural_numberEquality, 
independent_pairFormation, 
pointwiseFunctionality, 
pertypeElimination, 
productElimination, 
productEquality, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}T:Type.  (\00D9(\00D9(T))  {}\mRightarrow{}  \00D9(T))
Date html generated:
2017_04_17-AM-09_57_39
Last ObjectModification:
2017_02_27-PM-05_50_51
Theory : continuity
Home
Index