Step
*
1
1
1
1
1
of Lemma
monotone-bar-induction5
1. B : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. Q : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. (B[n;s]
⇒ ⇃(Q[n;s]))
4. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. ((∀m:ℕ. ⇃(Q[n + 1;s.m@n]))
⇒ ⇃(Q[n;s]))
5. bar : ∀alpha:ℕ ⟶ ℕ. ⇃(∃n:ℕ. (B[n;alpha] ∧ (∀m:{n...}. (B[m;alpha]
⇒ B[m + 1;alpha]))))
6. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
7. ∀f:ℕ ⟶ ℕ
∃n:ℕ
∃k:ℕn
(((B k f) ∧ (∀m:{k...}. (B[m;f]
⇒ B[m + 1;f])))
∧ ((M n f) = (inl k) ∈ (ℕ?))
∧ (∀m:ℕ. ((↑isl(M m f))
⇒ ((M m f) = (inl k) ∈ (ℕ?)))))
8. n : ℕ
9. s : ℕn ⟶ ℕ
10. ↑isl(M n s)
11. i : ℕ
12. k : ℕi
13. B k ext2Baire(n;s;0)
14. ∀m:{k...}. (B[m;ext2Baire(n;s;0)]
⇒ B[m + 1;ext2Baire(n;s;0)])
15. (M i ext2Baire(n;s;0)) = (inl k) ∈ (ℕ?)
16. ∀m:ℕ. ((↑isl(M m ext2Baire(n;s;0)))
⇒ ((M m ext2Baire(n;s;0)) = (inl k) ∈ (ℕ?)))
⊢ ⇃(Q[n;s])
BY
{ (InstHyp [⌜n⌝] (-1)⋅
THENA (Auto THEN NthHypEq(-7) THEN RepeatFor 3 ((EqCD THEN Auto)) THEN Unfold `ext2Baire` 0 THEN Auto)
) }
1
1. B : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. Q : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. (B[n;s]
⇒ ⇃(Q[n;s]))
4. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. ((∀m:ℕ. ⇃(Q[n + 1;s.m@n]))
⇒ ⇃(Q[n;s]))
5. bar : ∀alpha:ℕ ⟶ ℕ. ⇃(∃n:ℕ. (B[n;alpha] ∧ (∀m:{n...}. (B[m;alpha]
⇒ B[m + 1;alpha]))))
6. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
7. ∀f:ℕ ⟶ ℕ
∃n:ℕ
∃k:ℕn
(((B k f) ∧ (∀m:{k...}. (B[m;f]
⇒ B[m + 1;f])))
∧ ((M n f) = (inl k) ∈ (ℕ?))
∧ (∀m:ℕ. ((↑isl(M m f))
⇒ ((M m f) = (inl k) ∈ (ℕ?)))))
8. n : ℕ
9. s : ℕn ⟶ ℕ
10. ↑isl(M n s)
11. i : ℕ
12. k : ℕi
13. B k ext2Baire(n;s;0)
14. ∀m:{k...}. (B[m;ext2Baire(n;s;0)]
⇒ B[m + 1;ext2Baire(n;s;0)])
15. (M i ext2Baire(n;s;0)) = (inl k) ∈ (ℕ?)
16. ∀m:ℕ. ((↑isl(M m ext2Baire(n;s;0)))
⇒ ((M m ext2Baire(n;s;0)) = (inl k) ∈ (ℕ?)))
17. (M n ext2Baire(n;s;0)) = (inl k) ∈ (ℕ?)
⊢ ⇃(Q[n;s])
Latex:
Latex:
1. B : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbP{}
2. Q : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbP{}
3. \mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} \mBbbN{}. (B[n;s] {}\mRightarrow{} \00D9(Q[n;s]))
4. \mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} \mBbbN{}. ((\mforall{}m:\mBbbN{}. \00D9(Q[n + 1;s.m@n])) {}\mRightarrow{} \00D9(Q[n;s]))
5. bar : \mforall{}alpha:\mBbbN{} {}\mrightarrow{} \mBbbN{}. \00D9(\mexists{}n:\mBbbN{}. (B[n;alpha] \mwedge{} (\mforall{}m:\{n...\}. (B[m;alpha] {}\mRightarrow{} B[m + 1;alpha]))))
6. M : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} (\mBbbN{}n?)
7. \mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbN{}
\mexists{}n:\mBbbN{}
\mexists{}k:\mBbbN{}n
(((B k f) \mwedge{} (\mforall{}m:\{k...\}. (B[m;f] {}\mRightarrow{} B[m + 1;f])))
\mwedge{} ((M n f) = (inl k))
\mwedge{} (\mforall{}m:\mBbbN{}. ((\muparrow{}isl(M m f)) {}\mRightarrow{} ((M m f) = (inl k)))))
8. n : \mBbbN{}
9. s : \mBbbN{}n {}\mrightarrow{} \mBbbN{}
10. \muparrow{}isl(M n s)
11. i : \mBbbN{}
12. k : \mBbbN{}i
13. B k ext2Baire(n;s;0)
14. \mforall{}m:\{k...\}. (B[m;ext2Baire(n;s;0)] {}\mRightarrow{} B[m + 1;ext2Baire(n;s;0)])
15. (M i ext2Baire(n;s;0)) = (inl k)
16. \mforall{}m:\mBbbN{}. ((\muparrow{}isl(M m ext2Baire(n;s;0))) {}\mRightarrow{} ((M m ext2Baire(n;s;0)) = (inl k)))
\mvdash{} \00D9(Q[n;s])
By
Latex:
(InstHyp [\mkleeneopen{}n\mkleeneclose{}] (-1)\mcdot{}
THENA (Auto
THEN NthHypEq(-7)
THEN RepeatFor 3 ((EqCD THEN Auto))
THEN Unfold `ext2Baire` 0
THEN Auto)
)
Home
Index