Nuprl Lemma : monotone-bar-induction5

B,Q:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ.
  ((∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  ⇃(Q[n;s])))
   (∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. ⇃(Q[n 1;s.m@n]))  ⇃(Q[n;s])))
   (∀alpha:ℕ ⟶ ℕ. ⇃(∃n:ℕ(B[n;alpha] ∧ (∀m:{n...}. (B[m;alpha]  B[m 1;alpha])))))
   ⇃(Q[0;λx.⊥]))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] seq-add: s.x@n int_upper: {i...} int_seg: {i..j-} nat: bottom: prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q true: True lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: and: P ∧ Q subtype_rel: A ⊆B uall: [x:A]. B[x] nat: uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A so_lambda: λ2x.t[x] so_apply: x[s1;s2] sq_stable: SqStable(P) squash: T int_upper: {i...} ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k so_lambda: λ2y.t[x; y] guard: {T} true: True iff: ⇐⇒ Q rev_implies:  Q assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 ext2Baire: ext2Baire(n;f;d) cand: c∧ B outl: outl(x) subtract: m nequal: a ≠ b ∈  less_than: a < b seq-append: seq-append(n;m;s1;s2) seq-add: s.x@n seq-adjoin: s++t quotient: x,y:A//B[x; y] isl: isl(x)
Lemmas referenced :  strong-continuity-rel subtype_rel_function nat_wf int_seg_wf int_seg_subtype_nat istype-false subtype_rel_self all_wf int_upper_wf upper_subtype_nat sq_stable__le int_upper_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf istype-le istype-int_upper prop-truncation-quot int_seg_properties intformless_wf int_formula_prop_less_lemma istype-nat quotient_wf exists_wf true_wf equiv_rel_true seq-add_wf isl_wf assert_wf int_subtype_base lelt_wf set_subtype_base subtype_rel_union le_wf int_formula_prop_eq_lemma intformeq_wf decidable__equal_int unit_wf2 seq-adjoin_wf decidable__assert basic_bar_induction ext2Baire_wf less_than_wf iff_weakening_uiff assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert assert_of_lt_int eqtt_to_assert lt_int_wf bool_wf squash_wf btrue_neq_bfalse bfalse_wf btrue_wf iff_imp_equal_bool equal_wf decidable__lt zero-add zero-mul add-mul-special add-associates add-commutes minus-one-mul int_term_value_subtract_lemma itermSubtract_wf subtract_wf primrec-wf2 int_seg_subtype add-zero subtract-add-cancel neg_assert_of_eq_int istype-top assert_of_eq_int eq_int_wf member_wf quotient-member-eq union_subtype_base unit_subtype_base istype-assert istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  rename cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin Error :lambdaEquality_alt,  productEquality applyEquality hypothesisEquality isectElimination hypothesis because_Cache natural_numberEquality setElimination independent_isectElimination sqequalRule independent_pairFormation functionEquality independent_functionElimination imageMemberEquality baseClosed imageElimination Error :dependent_set_memberEquality_alt,  addEquality unionElimination approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination Error :universeIsType,  productElimination Error :functionIsType,  Error :inhabitedIsType,  Error :productIsType,  universeEquality intEquality closedConclusion baseApply Error :equalityIsType3,  equalitySymmetry equalityTransitivity functionExtensionality instantiate Error :unionIsType,  cumulativity promote_hyp Error :equalityIsType1,  equalityElimination Error :functionExtensionality_alt,  hyp_replacement applyLambdaEquality Error :inrEquality_alt,  Error :inlEquality_alt,  unionEquality Error :equalityIsType4,  Error :setIsType,  int_eqReduceFalseSq axiomSqEquality Error :isect_memberFormation_alt,  lessCases int_eqReduceTrueSq pertypeElimination pointwiseFunctionality Error :equalityIstype,  sqequalBase

Latex:
\mforall{}B,Q:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}.
    ((\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  \00D9(Q[n;s])))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  \00D9(Q[n  +  1;s.m@n]))  {}\mRightarrow{}  \00D9(Q[n;s])))
    {}\mRightarrow{}  (\mforall{}alpha:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}n:\mBbbN{}.  (B[n;alpha]  \mwedge{}  (\mforall{}m:\{n...\}.  (B[m;alpha]  {}\mRightarrow{}  B[m  +  1;alpha])))))
    {}\mRightarrow{}  \00D9(Q[0;\mlambda{}x.\mbot{}]))



Date html generated: 2019_06_20-PM-02_56_12
Last ObjectModification: 2018_12_06-PM-11_35_34

Theory : continuity


Home Index