Step
*
1
1
1
of Lemma
monotone-bar-induction8-implies-3
.....assertion..... 
1. ∀Q:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
     ((∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. ⇃(Q[n + 1;s.m@n])) 
⇒ ⇃(Q[n;s])))
     
⇒ (∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ. ∀m:{n...}. ⇃(Q[m;f])))
     
⇒ ⇃(Q[0;λx.⊥]))
2. B : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. Q : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
4. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s] 
⇒ (∀m:ℕ. B[n + 1;s.m@n]))
5. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s] 
⇒ ⇃(Q[n;s]))
6. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. ⇃(Q[n + 1;s.m@n])) 
⇒ ⇃(Q[n;s]))
7. ∀alpha:ℕ ⟶ ℕ. ⇃(∃m:ℕ. B[m;alpha])
8. f : ℕ ⟶ ℕ
9. m : ℕ
10. B[m;f]
11. m1 : {m...}
⊢ B[m1;f]
BY
{ ((Assert ⌜∃k:ℕ. (m1 = (m + k) ∈ ℤ)⌝⋅ THENA (InstConcl [⌜m1 - m⌝]⋅ THEN Auto))
   THEN ExRepD
   THEN (RWO "-1" 0 THENA Auto)
   THEN ThinVar `m1') }
1
1. ∀Q:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
     ((∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. ⇃(Q[n + 1;s.m@n])) 
⇒ ⇃(Q[n;s])))
     
⇒ (∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ. ∀m:{n...}. ⇃(Q[m;f])))
     
⇒ ⇃(Q[0;λx.⊥]))
2. B : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. Q : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
4. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s] 
⇒ (∀m:ℕ. B[n + 1;s.m@n]))
5. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s] 
⇒ ⇃(Q[n;s]))
6. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. ⇃(Q[n + 1;s.m@n])) 
⇒ ⇃(Q[n;s]))
7. ∀alpha:ℕ ⟶ ℕ. ⇃(∃m:ℕ. B[m;alpha])
8. f : ℕ ⟶ ℕ
9. m : ℕ
10. B[m;f]
11. k : ℕ
⊢ B[m + k;f]
Latex:
Latex:
.....assertion..... 
1.  \mforall{}Q:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}
          ((\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  \00D9(Q[n  +  1;s.m@n]))  {}\mRightarrow{}  \00D9(Q[n;s])))
          {}\mRightarrow{}  (\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}n:\mBbbN{}.  \mforall{}m:\{n...\}.  \00D9(Q[m;f])))
          {}\mRightarrow{}  \00D9(Q[0;\mlambda{}x.\mbot{}]))
2.  B  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}
3.  Q  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}
4.  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  (\mforall{}m:\mBbbN{}.  B[n  +  1;s.m@n]))
5.  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  \00D9(Q[n;s]))
6.  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  \00D9(Q[n  +  1;s.m@n]))  {}\mRightarrow{}  \00D9(Q[n;s]))
7.  \mforall{}alpha:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}m:\mBbbN{}.  B[m;alpha])
8.  f  :  \mBbbN{}  {}\mrightarrow{}  \mBbbN{}
9.  m  :  \mBbbN{}
10.  B[m;f]
11.  m1  :  \{m...\}
\mvdash{}  B[m1;f]
By
Latex:
((Assert  \mkleeneopen{}\mexists{}k:\mBbbN{}.  (m1  =  (m  +  k))\mkleeneclose{}\mcdot{}  THENA  (InstConcl  [\mkleeneopen{}m1  -  m\mkleeneclose{}]\mcdot{}  THEN  Auto))
  THEN  ExRepD
  THEN  (RWO  "-1"  0  THENA  Auto)
  THEN  ThinVar  `m1')
Home
Index