Nuprl Lemma : monotone-bar-induction8-implies-3

(∀Q:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
   ((∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. ⇃(Q[n 1;s.m@n]))  ⇃(Q[n;s])))
    (∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ. ∀m:{n...}. ⇃(Q[m;f])))
    ⇃(Q[0;λx.⊥])))
 (∀B,Q:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ.
      ((∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  (∀m:ℕB[n 1;s.m@n])))
       (∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  ⇃(Q[n;s])))
       (∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. ⇃(Q[n 1;s.m@n]))  ⇃(Q[n;s])))
       (∀alpha:ℕ ⟶ ℕ. ⇃(∃m:ℕB[m;alpha]))
       ⇃(Q[0;λx.⊥])))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] seq-add: s.x@n int_upper: {i...} int_seg: {i..j-} nat: bottom: prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  implies:  Q all: x:A. B[x] member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s1;s2] subtype_rel: A ⊆B so_apply: x[s] nat: uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A exists: x:A. B[x] so_lambda: λ2y.t[x; y] ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top int_upper: {i...} guard: {T} int_seg: {i..j-} lelt: i ≤ j < k squash: T label: ...$L... t sq_type: SQType(T) true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  nat_wf all_wf quotient_wf exists_wf subtype_rel_dep_function int_seg_wf int_seg_subtype_nat false_wf subtype_rel_self true_wf equiv_rel_true nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf seq-add_wf int_upper_wf int_upper_subtype_nat int_seg_properties intformless_wf int_formula_prop_less_lemma implies-quotient-true int_upper_properties subtract_wf itermSubtract_wf int_term_value_subtract_lemma decidable__equal_int intformeq_wf int_formula_prop_eq_lemma equal_wf squash_wf subtype_base_sq int_subtype_base iff_weakening_equal add-zero set_wf less_than_wf primrec-wf2 seq-add-same
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination functionEquality introduction extract_by_obid isectElimination because_Cache sqequalRule lambdaEquality applyEquality functionExtensionality natural_numberEquality setElimination rename independent_isectElimination independent_pairFormation dependent_set_memberEquality addEquality unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll cumulativity universeEquality instantiate productElimination imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed hyp_replacement

Latex:
(\mforall{}Q:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}
      ((\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  \00D9(Q[n  +  1;s.m@n]))  {}\mRightarrow{}  \00D9(Q[n;s])))
      {}\mRightarrow{}  (\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}n:\mBbbN{}.  \mforall{}m:\{n...\}.  \00D9(Q[m;f])))
      {}\mRightarrow{}  \00D9(Q[0;\mlambda{}x.\mbot{}])))
{}\mRightarrow{}  (\mforall{}B,Q:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}.
            ((\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  (\mforall{}m:\mBbbN{}.  B[n  +  1;s.m@n])))
            {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  \00D9(Q[n;s])))
            {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  \00D9(Q[n  +  1;s.m@n]))  {}\mRightarrow{}  \00D9(Q[n;s])))
            {}\mRightarrow{}  (\mforall{}alpha:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}m:\mBbbN{}.  B[m;alpha]))
            {}\mRightarrow{}  \00D9(Q[0;\mlambda{}x.\mbot{}])))



Date html generated: 2017_04_20-AM-07_22_02
Last ObjectModification: 2017_02_27-PM-05_57_28

Theory : continuity


Home Index