Nuprl Lemma : neighbourhood-function-nat_wf
∀[G:finite-nat-seq() ⟶ (ℕ?)]. (K0(G) ∈ Type)
Proof
Definitions occuring in Statement : 
neighbourhood-function-nat: K0(G)
, 
finite-nat-seq: finite-nat-seq()
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
unit: Unit
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
neighbourhood-function-nat: K0(G)
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
nat: ℕ
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
all_wf, 
nat_wf, 
exists_wf, 
assert_wf, 
isl_wf, 
unit_wf2, 
finite-nat-seq_wf, 
mk-finite-nat-seq_wf, 
subtype_rel_dep_function, 
int_seg_wf, 
int_seg_subtype_nat, 
false_wf, 
subtype_rel_self, 
equal_wf, 
append-finite-nat-seq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesis, 
because_Cache, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
natural_numberEquality, 
setElimination, 
rename, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
unionEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[G:finite-nat-seq()  {}\mrightarrow{}  (\mBbbN{}?)].  (K0(G)  \mmember{}  Type)
Date html generated:
2017_04_20-AM-07_29_06
Last ObjectModification:
2017_02_27-PM-05_59_37
Theory : continuity
Home
Index