Nuprl Lemma : neighbourhood-function-nat_wf

[G:finite-nat-seq() ⟶ (ℕ?)]. (K0(G) ∈ Type)


Proof




Definitions occuring in Statement :  neighbourhood-function-nat: K0(G) finite-nat-seq: finite-nat-seq() nat: uall: [x:A]. B[x] unit: Unit member: t ∈ T function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T neighbourhood-function-nat: K0(G) and: P ∧ Q so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] nat: uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: all: x:A. B[x] exists: x:A. B[x]
Lemmas referenced :  all_wf nat_wf exists_wf assert_wf isl_wf unit_wf2 finite-nat-seq_wf mk-finite-nat-seq_wf subtype_rel_dep_function int_seg_wf int_seg_subtype_nat false_wf subtype_rel_self equal_wf append-finite-nat-seq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productEquality extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis because_Cache lambdaEquality applyEquality functionExtensionality hypothesisEquality natural_numberEquality setElimination rename independent_isectElimination independent_pairFormation lambdaFormation unionEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[G:finite-nat-seq()  {}\mrightarrow{}  (\mBbbN{}?)].  (K0(G)  \mmember{}  Type)



Date html generated: 2017_04_20-AM-07_29_06
Last ObjectModification: 2017_02_27-PM-05_59_37

Theory : continuity


Home Index