Step
*
1
1
1
2
of Lemma
strong-continuity2-implies-3
1. [T] : Type
2. [F] : (ℕ ⟶ T) ⟶ ℕ
3. M : n:ℕ ⟶ (ℕn ⟶ T) ⟶ (ℕ?)
4. f : ℕ ⟶ T
5. n : ℕ
6. (M n f) = (inl (F f)) ∈ (ℕ?)
7. ∀n:ℕ. (M n f) = (inl (F f)) ∈ (ℕ?) supposing ↑isl(M n f)
8. ¬↑isl(strong-continuity-test(M;n;f;M n f))
⊢ ∃n:ℕ
((strong-continuity-test(M;n;f;M n f) = (inl (F f)) ∈ (ℕ?))
∧ (∀m:ℕ. ((↑isl(strong-continuity-test(M;m;f;M m f)))
⇒ (m = n ∈ ℕ))))
BY
{ ((FLemma `not-isl-assert-isr` [-1] THENA Auto) THEN Thin (-2)) }
1
1. [T] : Type
2. [F] : (ℕ ⟶ T) ⟶ ℕ
3. M : n:ℕ ⟶ (ℕn ⟶ T) ⟶ (ℕ?)
4. f : ℕ ⟶ T
5. n : ℕ
6. (M n f) = (inl (F f)) ∈ (ℕ?)
7. ∀n:ℕ. (M n f) = (inl (F f)) ∈ (ℕ?) supposing ↑isl(M n f)
8. ↑isr(strong-continuity-test(M;n;f;M n f))
⊢ ∃n:ℕ
((strong-continuity-test(M;n;f;M n f) = (inl (F f)) ∈ (ℕ?))
∧ (∀m:ℕ. ((↑isl(strong-continuity-test(M;m;f;M m f)))
⇒ (m = n ∈ ℕ))))
Latex:
Latex:
1. [T] : Type
2. [F] : (\mBbbN{} {}\mrightarrow{} T) {}\mrightarrow{} \mBbbN{}
3. M : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} T) {}\mrightarrow{} (\mBbbN{}?)
4. f : \mBbbN{} {}\mrightarrow{} T
5. n : \mBbbN{}
6. (M n f) = (inl (F f))
7. \mforall{}n:\mBbbN{}. (M n f) = (inl (F f)) supposing \muparrow{}isl(M n f)
8. \mneg{}\muparrow{}isl(strong-continuity-test(M;n;f;M n f))
\mvdash{} \mexists{}n:\mBbbN{}
((strong-continuity-test(M;n;f;M n f) = (inl (F f)))
\mwedge{} (\mforall{}m:\mBbbN{}. ((\muparrow{}isl(strong-continuity-test(M;m;f;M m f))) {}\mRightarrow{} (m = n))))
By
Latex:
((FLemma `not-isl-assert-isr` [-1] THENA Auto) THEN Thin (-2))
Home
Index