Step * 3 of Lemma u-almost-full-filter


1. : ℕ ⟶ ℙ@i'
2. : ℕ ⟶ ℙ@i'
3. u-almost-full(n.A[n])  u-almost-full(n.B[n])  u-almost-full(n.A[n] ∧ B[n])
4. (∀n:ℕ(A[n]  B[n]))  u-almost-full(n.A[n])  u-almost-full(n.B[n])
⊢ u-almost-full(n.True)
BY
(D THEN Auto) }

1
1. : ℕ ⟶ ℙ@i'
2. : ℕ ⟶ ℙ@i'
3. u-almost-full(n.A[n])  u-almost-full(n.B[n])  u-almost-full(n.A[n] ∧ B[n])
4. (∀n:ℕ(A[n]  B[n]))  u-almost-full(n.A[n])  u-almost-full(n.B[n])
5. StrictInc@i
⊢ ⇃(∃n:ℕTrue)


Latex:


Latex:

1.  A  :  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}@i'
2.  B  :  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}@i'
3.  u-almost-full(n.A[n])  {}\mRightarrow{}  u-almost-full(n.B[n])  {}\mRightarrow{}  u-almost-full(n.A[n]  \mwedge{}  B[n])
4.  (\mforall{}n:\mBbbN{}.  (A[n]  {}\mRightarrow{}  B[n]))  {}\mRightarrow{}  u-almost-full(n.A[n])  {}\mRightarrow{}  u-almost-full(n.B[n])
\mvdash{}  u-almost-full(n.True)


By


Latex:
(D  0  THEN  Auto)




Home Index