Nuprl Lemma : u-almost-full-filter
∀A,B:ℕ ⟶ ℙ.
  ((u-almost-full(n.A[n]) 
⇒ u-almost-full(n.B[n]) 
⇒ u-almost-full(n.A[n] ∧ B[n]))
  ∧ ((∀n:ℕ. (A[n] 
⇒ B[n])) 
⇒ u-almost-full(n.A[n]) 
⇒ u-almost-full(n.B[n]))
  ∧ u-almost-full(n.True))
Proof
Definitions occuring in Statement : 
u-almost-full: u-almost-full(n.A[n])
, 
nat: ℕ
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
true: True
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
u-almost-full: u-almost-full(n.A[n])
, 
strict-inc: StrictInc
, 
exists: ∃x:A. B[x]
, 
guard: {T}
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
true: True
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
Lemmas referenced : 
u-almost-full_wf, 
nat_wf, 
all_wf, 
intuitionistic-pigeonhole, 
strict-inc_wf, 
implies-quotient-true, 
exists_wf, 
true_wf, 
equiv_rel_true, 
false_wf, 
le_wf, 
quotient-member-eq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
independent_pairFormation, 
independent_functionElimination, 
because_Cache, 
functionEquality, 
cumulativity, 
universeEquality, 
dependent_functionElimination, 
setElimination, 
rename, 
productElimination, 
dependent_pairFormation, 
introduction, 
dependent_pairEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
axiomEquality, 
independent_isectElimination
Latex:
\mforall{}A,B:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}.
    ((u-almost-full(n.A[n])  {}\mRightarrow{}  u-almost-full(n.B[n])  {}\mRightarrow{}  u-almost-full(n.A[n]  \mwedge{}  B[n]))
    \mwedge{}  ((\mforall{}n:\mBbbN{}.  (A[n]  {}\mRightarrow{}  B[n]))  {}\mRightarrow{}  u-almost-full(n.A[n])  {}\mRightarrow{}  u-almost-full(n.B[n]))
    \mwedge{}  u-almost-full(n.True))
Date html generated:
2016_05_14-PM-09_48_55
Last ObjectModification:
2015_12_26-PM-09_47_00
Theory : continuity
Home
Index