Step
*
1
2
1
1
of Lemma
weak-continuity-implies-strong-cantor
.....subterm..... T:t
1:n
1. F : (ℕ ⟶ 𝔹) ⟶ ℕ
2. n : ℕ
3. ∀f,g:ℕ ⟶ 𝔹. ((f = g ∈ (ℕn ⟶ 𝔹))
⇒ ((F f) = (F g) ∈ ℕ))
4. f : ℕ ⟶ 𝔹
5. n@0 : ℕ
6. n ≤ n@0
7. True
⊢ (F ext2Cantor(n@0;f;tt)) = (F f) ∈ ℕ
BY
{ (BHyp 3 THEN Auto) }
1
1. F : (ℕ ⟶ 𝔹) ⟶ ℕ
2. n : ℕ
3. ∀f,g:ℕ ⟶ 𝔹. ((f = g ∈ (ℕn ⟶ 𝔹))
⇒ ((F f) = (F g) ∈ ℕ))
4. f : ℕ ⟶ 𝔹
5. n@0 : ℕ
6. n ≤ n@0
7. True
⊢ ext2Cantor(n@0;f;tt) = f ∈ (ℕn ⟶ 𝔹)
Latex:
Latex:
.....subterm..... T:t
1:n
1. F : (\mBbbN{} {}\mrightarrow{} \mBbbB{}) {}\mrightarrow{} \mBbbN{}
2. n : \mBbbN{}
3. \mforall{}f,g:\mBbbN{} {}\mrightarrow{} \mBbbB{}. ((f = g) {}\mRightarrow{} ((F f) = (F g)))
4. f : \mBbbN{} {}\mrightarrow{} \mBbbB{}
5. n@0 : \mBbbN{}
6. n \mleq{} n@0
7. True
\mvdash{} (F ext2Cantor(n@0;f;tt)) = (F f)
By
Latex:
(BHyp 3 THEN Auto)
Home
Index