Nuprl Lemma : weak-continuity-implies-strong-cantor
∀F:(ℕ ⟶ 𝔹) ⟶ ℕ
  ∃M:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ (ℕ?)
   ∀f:ℕ ⟶ 𝔹. ((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (ℕ?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (ℕ?) supposing ↑isl(M n f)))
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}, 
nat: ℕ, 
assert: ↑b, 
isl: isl(x), 
bool: 𝔹, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
unit: Unit, 
apply: f a, 
function: x:A ⟶ B[x], 
inl: inl x, 
union: left + right, 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
exists: ∃x:A. B[x], 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
exposed-it: exposed-it, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
bfalse: ff, 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
le: A ≤ B, 
less_than': less_than'(a;b), 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
ext2Cantor: ext2Cantor(n;f;d), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
isl: isl(x)
Lemmas referenced : 
strong-continuity2-implies-uniform-continuity2-nat, 
nat_wf, 
bool_wf, 
le_int_wf, 
eqtt_to_assert, 
assert_of_le_int, 
ext2Cantor_wf, 
int_seg_wf, 
btrue_wf, 
unit_wf2, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
le_wf, 
all_wf, 
exists_wf, 
subtype_rel_dep_function, 
int_seg_subtype_nat, 
false_wf, 
subtype_rel_self, 
isect_wf, 
assert_wf, 
isl_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
lt_int_wf, 
assert_of_lt_int, 
less_than_wf, 
int_seg_properties, 
intformand_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
functionEquality, 
hypothesis, 
dependent_pairFormation, 
lambdaEquality, 
isectElimination, 
setElimination, 
rename, 
because_Cache, 
unionElimination, 
equalityElimination, 
sqequalRule, 
independent_isectElimination, 
inlEquality, 
applyEquality, 
functionExtensionality, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
inrEquality, 
axiomEquality, 
independent_pairFormation, 
productEquality, 
unionEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
isect_memberFormation
Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbN{}
    \mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  (\mBbbN{}?)
      \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}
          ((\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))  \mwedge{}  (\mforall{}n:\mBbbN{}.  (M  n  f)  =  (inl  (F  f))  supposing  \muparrow{}isl(M  n  f)))
Date html generated:
2017_04_17-AM-10_00_05
Last ObjectModification:
2017_02_27-PM-05_53_14
Theory : continuity
Home
Index