Nuprl Lemma : sq_stable_iff_stable
XM ⇒ (∀P:ℙ. (SqStable(P) ⇐⇒ Stable{P}))
Proof
Definitions occuring in Statement : 
xmiddle: XM, 
sq_stable: SqStable(P), 
stable: Stable{P}, 
prop: ℙ, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q
Definitions unfolded in proof : 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
rev_implies: P ⇐ Q, 
xmiddle: XM
Lemmas referenced : 
sq_stable_wf, 
sq_stable__from_stable, 
stable__from_decidable, 
stable_wf, 
xmiddle_wf, 
xmiddle-implies-stable
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
independent_pairFormation, 
Error :universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
because_Cache, 
dependent_functionElimination, 
universeEquality
Latex:
XM  {}\mRightarrow{}  (\mforall{}P:\mBbbP{}.  (SqStable(P)  \mLeftarrow{}{}\mRightarrow{}  Stable\{P\}))
 Date html generated: 
2019_06_20-AM-11_15_45
 Last ObjectModification: 
2018_09_27-PM-05_36_21
Theory : core_2
Home
Index